Ⅰ 初一數學所有單元的思維導圖
將數學思維導圖引入中職數學課堂中,指導學生運用思維導圖梳理數學知識點,形成知識板塊,以及運用思維導圖提高審題能力,學會數學。 下面我精心整理了初一數學所有單元的思維導圖,供大家參考,希望你們喜歡!
初一數學所有單元的思維導圖欣賞 初一數學所有單元的思維導圖1
初一數學所有單元的思維導圖2
初一數學所有單元的思維導圖3
初一數學所有單元的思維導圖4
初一數學所有單元的思維導圖5
初一數學所有單元的如埋思維導圖6
初一數學所有單元的思維導圖7
渣脊螞初一數學所有單元的思維導圖8
初一數學所有單元的思維導圖相關文章:
1. 如野攜何給你的思維畫一幅導圖
2. 思維導圖作圖規則和繪制方法詳解
3. 7年級數學的思維導圖
4. 7年級數學有理數的思維導圖
5. 初一上語文思維導圖
6. 小學數學思維導圖手抄報資料
Ⅱ 初中一二年級代數知識結構圖
1、方程 1、方程的定義:含有未知數的等式叫做方程。
2、方程的解:一般地說,使方程中左、右兩邊的值相等的未知數的指叫做方程的解。只有一個未知數的方程的解,也叫做方程的根。 3、解方程:求方程的解的過程叫做解方程。
2、同解方程和同解原理 1、同解方程:在兩個方程中,如果第一個方程的解都是第二個方程的解,並且第二個方程的解也都是第一個方程的解,我們就說這
兩個方程的解相同,只兩個方程叫做同解方程。
第三章
2、同解原理1:方程的兩邊都加上(或者都減去)同一個數或同一個整式,所得的方程和原方程是同解方程。 3、同解原理2:方程的兩邊都乘(或者都除以)同一個不等於零的數,所得的方程和原方程是同解方程。
3、一元一次方程和它的解法 1、一元一次方程的定義:一般的,我們把只含有一個未知數,並且未知數的次數是一的整式方程叫做一元一次方程。
2、解一元一次方程的主要步驟:1、去分母、去括弧,並化為整數系數方程;
2、移項、合並同類項,化為簡易方程;
3、使簡易方程中未知數的系數化為1,從而得到方程的解。
一元一次方程
4、 一元一次方程解應用題 1、列方程解應用題的主要步驟:(1)認真讀題,理解題意,弄清題目中的數量關系,找出其中的相等關系;
(2)用字母表示題目中的未知量,用這個字母和已知數一起組成表示各數量關系得代數式;
(3)利用這些代數式列出反映某個相等關系的方程。
(4)求出所列方程的解。
(5)檢驗所求的解是否既能使方程成立,又能使應用題有意義,並寫出題目的答案。
1、二元一次方程 1、二元一次方程的定義:一般地,形如ax+by+c=0(其中a,b,c是已知數且a≠0,b≠0)的方程叫做二元一次方程。
2、二元一次方程的解:使二元一次方程ax+by+c=0的左右兩邊的值相等的一對x和y的值,叫做這個方程的一個解。
3、二元一次方程的解集:由二元一次方程的所有的解組成的集合,叫做二元一次方程的解集。
第四章
2、二元一次方程組 1、兩個二元一次方程用「{」寫在一起,就組成了一個二元一次方程組。
2、二元一次方程組的解:一般地,使二元一次方程組得兩個方程左、右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。
3、解方程組:是方程組中的每一個方程都成立的一組未知數的值叫做這個方程組的一個解。求方程組的解的過程叫做解方程組。
二元一次方程組
3、二元一次方程組的解法 1、用代入法解二元一次方程組:通過「代入」消去一個未知數,從而求出方程組的解的方法叫做「代入消元法」建成「代入法」。
2、代入法解二元一次方程組得一般步驟:(1)從方程組中選出一個系數比較簡單的方程,把這個方程變形為用一個未知數表示另一
個未知數得代數式 ,寫成:y=ax+b的形式;
(2)把形如y=ax+b的方程代入到另一個方程中,得到一個關於x的一元一次方程,從
而求出x的值;
(3)把求得的x的值代入形如y=ax+b的方程中,從而得到y的值;
(4)寫出方程的解。
3、用加減法解二元一次方程組:應用方程加減的方法達到消去一個未知數,是二元一次方程組通過利用解一元一次方程而達到求
解的目的,這種方法叫做加減消元法。 4、加減法解二元一次方程組的一般步驟:(1)在標准形式下的二元一次方程組中,如果兩方程中相同未知數的系數相同,或呼為
相反數,就可以把兩個方程相減(相同時)或相加(虎威相反數時)而小區一個未知數,得到一個一元一次方程;(2)解所得的一元一次方程,求出一個未知數的值;(3)把求出的未知數的值代入原方程組中的某一個方程,求出另一個未知數的值。(4)
寫出方程組的解;(5)如果兩方程中相同未知數的系數既不相等,也不行威相反數,就可以根據方程的同解原理2,選擇適當的書去乘方程的兩邊,使他站化為步驟1所說的情形,再按照步驟1至步驟4進行。
1、不等式 1、不等式的定義:用不等號表示不相等關系的式子叫做不等式。我們把用符號「≥」或「≤」聯接起來的式子也叫不等式。
2、不等式的解集:一般地,一個含有未知數的不等式的所有的解,組成這個不等式的解的集合,簡稱為這個不等式的解集。求不等式解集的過程, 叫做解不等式。
3、不等式的基本性質:性質1:不等式的兩邊都加上(或都減去)同一個數或同一個整式,不等號的方向不變; 性質2:不等式的兩邊都乘以(或都除以)同一個正數,不等號的方向不變; 性質3:不等式的兩邊都乘以(或都除以)同一個負數,不等號的方向改變。 用數學式子表示為: 如果a>b,那麼a+c>b+c(或a-c>b-c); 如果a>b,且c>0,那麼ac>bc(或a÷c>b÷c) ; 如果a>b,且c<0,那麼ac<bc(或a÷c<b÷c )
第五章
4、不等式的同解原理:1、不等式的兩邊都加上(或都減去)同一個數或同一個整式,所得的不等式與原不等式是同解不等式;
一元一次不等式和 2、不等式的兩邊都乘以(或都除以)同一個正數,所得的不等式與原不等式是同解不等式
一元一次不等式組 3、不等式的兩邊都乘以(或都除以)同一個負數,並且把不等號改變方向後,所得的不等式與原不等式是同解不等式。
2、一元一次不等式和它的解法 1、一元一次不等式的定義:只含有一個未知數且未知數的次數是1的不等式是一元一次不等式。
2、解法:一般地,對於任意一個一元一次不等式,運用不等式的3個基本性質,一定可以變形為mx>n(m≠0)或mx<n
(m≠0) 的形式,再根據不等式的基本性質2或基本性質3把未知數x的系數化為1,就能得到原不等式的解集。
3、一元一次不等式組和它的解法 1、一元一次不等式組:當兩個或兩個以上的含有同一未知數的一元一次不等式合在一起時,就組成了一個一元一次不
等式組。
2、不等式組的解集:不等式組中的幾個一元一次不等式組的解肌的公共部分,叫做這個不等式組的解集。求不等式解
集的過程叫做解不等式組。
1、整式的乘法 1、同底數冪的乘法(性質):同底數冪相乘,底數不變,指數相加。
2、冪的乘方與積的的乘方:(1)冪的乘方性質: 冪的乘方,底數不變,指數相乘。
(2)積的乘方性質:積的乘方,等於把積的每一個因式分別乘方,再把所得的冪相乘。
3、單項式的乘法(法則):單項式相乘,把它們的系數相乘的積、相同字母的冪相乘所得的積,分別作為積的因式,並把只在一個單項式里出現的字母 的冪也作為積的因式。 4、單項式與多項式相乘(法則):單項式乘多項式,就是用單項式去乘多項式的每一項,再把所得的積相加。
第六章
5、多項式的乘法(法則):多項式與多項式相乘,先用其中一個多項式中的每一項去乘另一個多項式的每一項,再把所得的積相加。
2、乘法公式 1、平方差公式:兩個數的和與這兩個數的差的乘積,等於這兩個數的平方差。用字母表示為:(a+b)(a-b)=a²-b²
整式的乘除
2、完全平方公式:兩個數的和(或差)的平方,等於這兩個數的平方的和,再加上(或減去)這兩個數的乘積的2倍。用字母表示為:
(a±b)²=a²+b²±2ab
3、整式的除法 1、同底數冪的除法:(1)一個不等於零的數的零次冪等於1。
(2)任何一個不等於零的數的-p次冪,等於這個數的p次冪的倒數。或者說,等於這個數的倒數的p次冪。
2、同底數冪的除法(性質):同底數冪相除,底數不變,指數相減。 3、單項式除以單項式(法則):單項式相除,把系數和同底數的冪分別相除,所得的商作為商的因式。對於只在被除式中出現的字母,則連同它的指數做
為商的因式。
4、多項式除以單項式(法則):用這個單項式去除多項式的每一項,再把所得的商相加。
1、因式分解 1、因式分解的定義:把一個多項式化為幾個正式的乘積的形式,這種式子的變形叫做把這個多項式因式分解。
第七章 2、因式分解的基本方法 1、提取公因式法:(1)公因式的定義:把多項式各項都含有的因式叫做多項式各項的公因式。 (2)提取公因式法:依照公式:把公因式m提到括弧外面,從而化為公因式m與多項式a+b-c的乘積,就達到了因式分解的
的目的。
2、運用公式法:把符合各乘法公式右邊的特點的多項式,依照公式寫成等號左邊的多項式的乘積的形式,從而達到因式分解的目的。
3、分組分解法:先把多項式有規律的分組,再用其他分解方法進行因式分解。
因式分解
4、十字相乘法:把二次三項式px²+qx+r (p>0且p≠1) 用含有「×」的數表寫成的形式進行因式分解,叫做十字相乘法。
只能幫你這么多了
此答案是從網上借鑒的
誠實的告訴你
Ⅲ 七年級數學有理數思維導圖
學生可以運用 思維導圖 梳理數學知識點,形成知識板塊,更好的學習和復習數學。下面我精心整理了 七年級數學 有理數思維導圖,供大家參考,希望你們喜歡!
七年級數學有理數思維導圖匯總
七年級數學有理數的詞語介紹
中文名:有理數
英文:rational number
符號:Q
整數和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零3種數。由於任何一個整數或分數都可以化為十進循環小數,反之,每一個十進循環小數也能化為整數或分數,因此,有理數也可以定義為十進循環小數。有理數集是整數集的擴張。在有理數集內,加法、減法、乘法、除法(除數不為零)4種運算通行無阻。有理數的大小順序的規定:如果a-b是正有理數,就稱a大於b或b小於a,記作a>b或b
七年級數學有理數的運演算法則
1.同號相加,取相同符號,並把絕對值相加。
2.絕對值不等的異號相加,取絕對值較大的加數符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
4.相反數相加結果一定得0。
注意
一是確定結果的符號;二是求結果的絕對值. 在進行有理數加法運算時,首先判斷兩個加數的符號:是同號還是異號,是否有0.從而確定用那一條法則。在應用過程中,一定要牢記"先符號,後絕對值",熟練以後就不會出錯了. 多個有理數的加法,可以從左向右計算,也可以用加法的運算定律計算,但是在下筆前一定要思考好,哪一個要用定律哪一個要從左往右計算.
減法
法則
有理數減法法則:減去一個數,等於加上這個數的相反數。其中:兩變:減法運算變加法運算,減數變成它的相反數做加數。一不變:被減數不變。可以表示成: a-b=a+(-b)。
乘法
法則
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘。例:(-5)×(-3)=15 (-6)×4=-24 。
(2)任何數同0相乘,都得0。 例:0×1=0
(3)幾個不等於0的數字相乘,積的符號由負因數的個數決定。當負因數有奇數個數時,積為負;當負因數有非零偶數個數時,積為正。並把其絕對值相乘。例:(-10)×〔-5〕×(-0.1)×(-6)=積為正數,而(-4)×(-7)×(-25)=積為負數
(4)幾個數相乘,有一個因數為0時,積為0。例:3×(-2)×0=0 。
(5)乘積為1的兩個有理數互為倒數(reciprocal)。(乘積為-1的互為負倒數)例如,—3與—1/3,—3/8與—8/3。
除法
法則
(1)除以一個數等於乘以這個數的倒數。(注意:0沒有倒數)
(2)兩數相除,同號為正,異號為負,並把絕對值相除。
(3)0除以任何一個不等於0的數,都等於0。
注意:
0在任何條件下都不能做除數。
七年級數學有理數思維導圖相關 文章 :
1. 關於數學有理數的手抄報帶圖
2. 初一上冊數學的思維導圖
3. 七年級上冊數學有理數手抄報
4. 7年級數學的思維導圖
5. 如何給你的思維畫一幅導圖
6. 初一上數學的思維導圖
Ⅳ 畫一個七年級下冊數學第三章「整式的整除」的思維導圖。
思維導圖:
Ⅳ 人教版初中數學知識結構圖
第一章 有理數
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。
1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。
第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。
第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。
第五章 相交線與平行線
5.1 相交線
對頂角(vertical angles)相等。
過一點有且只有一條直線與已知直線垂直(perpendicular)。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。
5.2 平行線
經過直線外一點,有且只有一條直線與這條直線平行(parallel)。
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。
5.3 平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
判斷一件事情的語句,叫做命題(proposition)。
第六章 平面直角坐標系
6.1 平面直角坐標系
含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對(ordered pair)。
第七章 三角形
7.1 與三角形有關的線段
三角形(triangle)具有穩定性。
7.2 與三角形有關的角
三角形的內角和等於180度。
三角形的一個外角等於與它不相鄰的兩個內角的和。
三角形的一個外角大於與它不相鄰的任何一個內角
7.3 多邊形及其內角和
n邊形內角和等於:(n-2)•180度
多邊形(polygon)的外角和等於360度。
第八章 二元一次方程組
8.1 二元一次方程組
方程中含有兩個未知數(x和y),並且未知數的指數都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
8.2 消元
將未知數的個數由多化少、逐一解決的想法,叫做消元思想。
第九章 不等式與不等式組
9.1 不等式
用小於號或大於號表示大小關系的式子,叫做不等式(inequality)。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質:
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
三角形中任意兩邊之差小於第三邊。
三角形中任意兩邊之和大於第三邊。
9.3 一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。
第十章 實數
10.1 平方根
如果一個正數x的平方等於a,那麼這個正數x叫做a的算術平方根(arithmetic square root),2是根指數。
a的算術平方根讀作「根號a」,a叫做被開方數(radicand)。
0的算術平方根是0。
如果一個數的平方等於a,那麼這個數叫做a的平方根或二次方根(square root) 。
求一個數a的平方根的運算,叫做開平方(extraction of square root)。
10.2 立方根
如果一個數的立方等於a,那麼這個數叫做a的立方根或三次方根(cube root)。
求一個數的立方根的運算,叫做開立方(extraction of cube root)。
10.3 實數
無限不循環小數又叫做無理數(irrational number)。
有理數和無理數統稱實數(real number)。
我才是七年級的,對不起,只能幫到這了。。。。。。。
Ⅵ 初一(七年級)下冊數學知識點:平面直角坐標系
平面直角坐標系是初一數學下學期學習的第三章內容,平面直角坐標系是數軸由一維到二維的過渡,同時它又是學習函數的基礎,起到承上啟下的作用。以下是我帶來的初一(七年級)下冊數學知識點:平面直角坐標系,歡迎閱讀。
一、目標與要求
1.解有序數對的應用意義,了解平面上確定點的常用方法。
2.培養學生用數學的意識,激發學生的學習興趣。
3.掌握坐標變化與圖形平移的關系;能利用點的平移規律將平面圖形進行平移;會根據圖形上點的坐標的變化,來判定圖形的移動過程。
4.發展學生的形象思維能力,和數形結合的意識。
5.坐標表示平移體現了平面直角坐標系在數學中的應用。
二、重點
掌握坐標變化與圖形平移的關系;
有序數對及平面內確定點的方法。
三、難點
利用坐標變化與圖形平移的關系解決實際問題;
利用有序數對表示平面內的點。
四、知識框架
五、知識點、概念總結
1.有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的'含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)其中a表示橫軸,b表示縱軸。
2.平面直角坐標系:在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與垂直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,豎直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O 稱為直角坐標系的原點。
3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4.坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6.特殊位置的點的坐標的特點
(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2)第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行於縱軸;如果兩點的縱坐標相同,則兩點的連線平行於橫軸。
(4)點到軸及原點的距離。
點到x軸的距離為|y|;點到y軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;
7.在平面直角坐標系中對稱點的特點
(1)關於x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。(橫同縱反)
(2)關於y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。(橫反縱同)
(3)關於原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。(橫縱皆反)
8.各象限內和坐標軸上的點和坐標的規律
第一象限:(+,+)正正
第二象限:(-,+)負正
第三象限:(-,-)負負
第四象限:(+,-)正負
x軸正方向:(+,0)
x軸負方向:(-,0)
y軸正方向:(0,+)
y軸負方向:(0,-)
x軸上的點的縱坐標為0,y軸上的點的橫坐標為0.
原點:(0,0)
註:以數對形式(x,y)表示的坐標系中的點(如2,-4),"2"是x軸坐標,"-4"是y軸坐標。
9.坐標方法的簡單應用:
(1)用坐標表示地理位置
(2)用坐標表示平移
10.平面直角坐標系其他公式
(1)坐標平面內的點與有序實數一一對應。
(2) 一三象限角平分線上的點橫縱坐標相等。
(3)二四象限角平分線上的點橫縱坐標互為相反數。
(4)一點上下平移,橫坐標不變,即平行於y軸的直線上的點橫坐標相同。
(5)y軸上的點,橫坐標為0.
(6)x軸上的點,縱坐標為0.
(7)坐標軸上的點不屬於任何象限。
六、經典例題
例1一個機器人從O點出發,向正東方向走3米到達A1點,再向正北方向走6米到達A2點,再向正西方向走9米到達A3點,再向正南方向走12米到達A4點,再向正東方向走15米到達A5點,如果A1求坐標為(3,0),求點 A5的坐標。
例2如圖是在方格紙上畫出的小旗圖案,若用(0,0)表示A點,(0,4)表示B點,那麼C點的位置可表示為( )
A、(0,3) B、(2,3) C、(3,2) D、(3,0)
例3如圖2,根據坐標平面內點的位置,寫出以下各點的坐標:
A( ),B( ),C( )。
例4如圖,面積為12cm2的△ABC向x軸正方向平移至△DEF的位置,相應的坐標如圖所示(a,b為常數),
(1)、求點D、E的坐標
(2)、求四邊形ACED的面積。
例5過兩點A(3,4),B(-2,4)作直線AB,則直線AB( )
A、經過原點 B、平行於y軸
C、平行於x軸 D、以上說法都不對
Ⅶ 七年級數學第3章思維導圖圖片
七年級數學第3章,一元一次方程部分的內容嗎?參考這張思維可視化研究院,劉濯源教授團隊的作品,自己畫,或到劉濯源教授新浪博客中查閱相關文章學習。