當前位置:首頁 » 基礎知識 » 初中數學有趣的知識點
擴展閱讀
怒放是什麼歌詞 2025-02-25 04:24:27
同學群里如何做游戲 2025-02-25 04:21:40

初中數學有趣的知識點

發布時間: 2025-02-25 01:21:52

⑴ 初中數學有哪些知識點

考點1

相似三角形的概念、相似比的意義、畫圖形的放大和縮小。

考核要求:

(1)理解相似形的概念;

(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

考點2

平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。

考點3

相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。

考點4

相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。

考點5

三角形的重心

考核要求:知道重心的定義並初步應用。

考點6

向量的有關概念

考點7

向量的加法、減法、實數與向量相乘、向量的線性運算

考核要求:掌握實數與向量相乘、向量的線性運算

考點8

銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。

考點9

解直角三角形及其應用

考核要求:

(1)理解解直角三角形的意義;

(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。

考點10

函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

考核要求:

(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;

(2)知道常值函數;

(3)知道函數的表示方法,知道符號的意義。

考點11

用待定系數法求二次函數的解析式

考核要求:

(1)掌握求函數解析式的方法;

(2)在求函數解析式中熟練運用待定系數法。

注意求函數解析式的步驟:一設、二代、三列、四還原。

考點12

畫二次函數的圖像

考核要求:

(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像

(2)理解二次函數的圖像,體會數形結合思想;

(3)會畫二次函數的大致圖像。

考點13

二次函數的圖像及其基本性質

考核要求:

(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;

(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。

注意:

(1)解題時要數形結合;

(2)二次函數的平移要化成頂點式。

考點14

圓心角、弦、弦心距的概念

考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。

考點15

圓心角、弧、弦、弦心距之間的關系

考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。

考點16

垂徑定理及其推論

垂徑定理及其推論是圓這一板塊中最重要的知識點之一。

考點17

直線與圓、圓與圓的位置關系及其相應的數量關系

直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。

考點18

正多邊形的有關概念和基本性質

考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。

考點19

畫正三、四、六邊形。

考核要求:能用基本作圖工具,正確作出正三、四、六邊形。

考點20

確定事件和隨機事件

考核要求:

(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;

(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。

考點21

事件發生的可能性大小,事件的概率

考核要求:

(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;

(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;

(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。

注意:

(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;

(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。

考點22

等可能試驗中事件的概率問題及概率計算

考核要求:

(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;

(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;

(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。

注意:

(1)計算前要先確定是否為可能事件;

(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

考點23

數據整理與統計圖表

考核要求:

(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;

(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。

考點24

統計的含義

考核要求:

(1)知道統計的意義和一般研究過程;

(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。

考點25

平均數、加權平均數的概念和計算

考核要求:

(1)理解平均數、加權平均數的概念;

(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。

考點26

中位數、眾數、方差、標准差的概念和計算

考核要求:

(1)知道中位數、眾數、方差、標准差的概念;

(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。

注意:

(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;

(2)求中位數之前必須先將數據排序。

考點27

頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖

考核要求:

(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;

(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1。

考點28

中位數、眾數、方差、標准差、頻數、頻率的應用

考核要求:

(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;

(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;

(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。

⑵ 初中七年級數學知識點總結

天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初一數學知識點

1.不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。

2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。

一般地,用純粹的大於號、小於號">","<"連接的不等式稱為嚴格不等式,用不小於號(大於或等於號)、不大於號(小於或等於號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。

3.不等式的解:使不等式成立的未知數的值,叫做不等式的解。

4.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

5.不等式解集的表示 方法 :

(1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3

(2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。

(2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那麼不等式 F(x)< G(x)與不等式H(x)+F(x)

(3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,並且H(x)>0,那麼不等式F(x)< G(x)與不等式H(x)F(x)0,那麼不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。

7.不等式的性質:

(1)如果x>y,那麼yy;(對稱性)

(2)如果x>y,y>z;那麼x>z;(傳遞性)

(3)如果x>y,而z為任意實數或整式,那麼x+z>y+z;(加法則)

(4)如果x>y,z>0,那麼xz>yz;如果x>y,z<0,那麼xz

(5)如果x>y,z>0,那麼x÷z>y÷z;如果x>y,z<0,那麼x÷z

(6)如果x>y,m>n,那麼x+m>y+n(充分不必要條件)

(7)如果x>y>0,m>n>0,那麼xm>yn

(8)如果x>y>0,那麼x的n次冪>y的n次冪(n為正數)

初一下冊數學知識點

1.數據的整理:我們利用劃記法整理數據,如下圖所示,

2.數據的描述:為了更直觀地看出上表中的信息,我們還可以用條形統計圖和扇形統計圖來描述數據。如下圖所示:

3.全面調查:考察全體對象的調查方式叫做全面調查。

4.抽樣調查:抽樣調查是,一種非全面調查,它是從全部調查研究對象中,抽選一部分單位進行調查,並據以對全部調查研究對象作出估計和推斷的一種調查方法。顯然,抽樣調查雖然是非全面調查,但它的目的卻在於取得反映總體情況的信息資料,因而,也可起到全面調查的作用。

5.抽樣調查分類:根據抽選樣本的方法,抽樣調查可以分為概率抽樣和非概率抽樣兩類。

概率抽樣是按照概率論和數理統計的原理從調查研究的總體中,根據隨機原則來抽選樣本,並從數量上對總體的某些特徵作出估計推斷,對推斷出可能出現的誤差可以從概率意義上加以控制。習慣上將概率抽樣稱為抽樣調查。

6.總體:要考察的全體對象稱為總體。

7.個體:組成總體的每一個考察對象稱為個體。

8.樣本:被抽取的所有個體組成一個樣本。為了使樣本能夠正確反映總體情況,對總體要有明確的規定;總體內所有觀察單位必須是同質的;在抽取樣本的過程中,必須遵守隨機化原則;樣本的觀察單位還要有足夠的數量。又稱「子樣」。按照一定的抽樣規則從總體中取出的一部分個體。

9.樣本容量:樣本中個體的數目稱為樣本容量。

10.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。也稱次數。在一組依大小順序排列的測量值中,當按一定的組距將其分組時出現在各組內的測量值的數目,即落在各類別(分組)中的數據個數。

如有一組測量數據,數據的總個數N=148最小的測量值Xmin=0.03,的測量值Xmax=31.67,按組距為△x=3.000將148個數據分為11組,其中分布在15.05~18.05范圍內的數據有26個,則稱該數據組的頻數為26.

11.頻率:頻數與數據總數的比為頻率。在相同的條件下,進行了n次試驗,在這n次試驗中,事件A發生的次數n(A)稱為事件A發生的頻數。比值n(A)/n稱為事件A發生的頻率,並記為fn(A).用文字表示定義為:每個對象出現的次數與總次數的比值是頻率。

(1)當重復試驗的次數n逐漸增大時,頻率fn(A)呈現出穩定性,逐漸穩定於某個常數,這個常數就是事件A的概率.這種「頻率穩定性」也就是通常所說的統計規律性。

(2)頻率不等同於概率.由伯努利大數定理,當n趨向於無窮大的時候,頻率fn(A)在一定意義下接近於概率P(A).頻率公式:頻數總體數量=頻率

12.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。

初一數學方法技巧

1.請概括的說一下學習的方法

曰:「像做其他事一樣,學習數學要研究方法。我為你們推薦的方法是:超前學習,展開聯想,多做 總結 ,找出合情合理。

2.請談談超前學習的好處

曰:「首先,超前學習能挖掘出自身的潛力,培養自學能力。經過超前學習,會發現自己能獨立解決許多問題,對提高自信心,培養學習興趣很有幫助。」

其次,夠消除對新知識的「隱患」。超前學習能夠發現在現有的基礎上,自己對新知識認識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達到這種理解水平,實踐證明,並非這樣。

再次,超前學習中的有些內容,當時不能透徹理解,但經過深思之後,即使擱置一邊,大腦也會潛意識「加工」。當教師進度進行到這塊內容時,我們做第二次理解,會深刻的多。

最後,超前學習能提高聽課質量。超前學習以後,我們發現新知識中的多數自己完全可以理解。只有少數地方需藉助於別人。這樣,在課堂上,我們即能將可以集中注意力的時間放「這少數地方」的理解上,即「好鋼用在刀刃上」。事實上,一節課,能集中注意力的時間並不太多。

3.請談談聯想與總結

曰:聯想與總結貫穿與學習過程中的始終。對每一知識的認識,必定要有認識基礎。尋找認識基礎的過程即是聯想,而認識基礎的是對以前知識的總結。以前總結的越簡潔、清晰、合理,越容易聯想。這樣就可以把新知識熔進原來的知識結構中為以後的某次聯想奠定基礎。聯想與總結在解題中特別有效。也許你以前並沒有這樣的認識,但解題能力卻很強,這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認識這一點,你的能力會更強。

4.那麼我們怎樣預習呢?

曰:「先 說說 學習的目標:(1)知道知識產生的背景,弄清知識形成的過程。

(2)或早或晚的知道知識的地位和作用:(3)總結出認識問題的規律(或說出認識問題使用了以前的什麼規律)。

再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要藉助具體的東西加以理解。有時藉助字面的含義:有時藉助其他學科知識。有時藉助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫後再做題。

(2)對公式定理的預習,公式定理是使用最多的「規律」的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。

(3)對於例題及習題的處理見上面的(2)及下面的第五條。


初中七年級數學知識點總結相關 文章 :

★ 初中七年級數學知識點歸納整理

★ 七年級數學知識點整理大全

★ 初一數學課本知識點總結

★ 七年級數學知識點總結

★ 人教版初一數學知識點整理

★ 初一數學上冊知識點歸納

★ 初中數學知識點整理:

★ 初中數學知識點總結大全

★ 七年級下數學知識點總結

★ 初一數學知識點歸納與學習方法

⑶ 那裡有 初中數學助記口訣(趣味性查驗知識點) 例如去、添括弧法則 去括弧、添括弧,關鍵看符號;括弧前面

初中數學助記口訣(趣味性查驗知識點)
一、數與代數
Ⅰ、數與式
1.有理數的加法、乘法運算
同號相加一邊倒,異號相加「大」減「小」;符號跟著大的跑,絕對值相等「零」正好。

同號得正異號負,一項為零積是零。 【注】「大」減「小」是指絕對值的大小。

2.合並同類項
合並同類項,法則不能忘;只求系數代數和,字母、指數不變樣。

3.去、添括弧法則
去括弧、添括弧,關鍵看符號;括弧前面是正號,去、添括弧不變號;

括弧前面是負號,去、添括弧都變號。

4.單項式運算
加、減、乘、除、乘(開)方,三級運算分得清;系數進行同級(運)算,指數運算降級(進)行。

5.分式混合運演算法則
分式四則運算,順序乘除加減;乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先;分子分母相約,然後再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

變號必須兩處,結果要求最簡。

6.平方差公式
兩數和乘兩數差,等於兩數平方差;積化和差變兩項,完全平方不是它。

7.完全平方公式
首平方又末平方,二倍首末在中央;和的平方加再加,先減後加差平方。

8.因式分解
一提二套三分組,十字相乘也上數;四種方法都不行,拆項添項去重組;重組無望試求根,

換元或者算余數;多種方法靈活選,連乘結果是基礎;同式相乘若出現,乘方表示要記住。

【注】 一提(提公因式)二套(套公式)

9.二次三項式的因式分解
先想完全平方式,十字相乘是其次;兩種方法行不通,求根分解去嘗試。

10.比和比例
兩數相除也叫比,兩比相等叫比例;基本性質第一條,外項積等內項積;

前後項和比後項,組成比例叫合比;前後項差比後項,組成比例是分比;

兩項和比兩項差,比值相等合分比;前項和比後項和,比值不變叫等比;

商定變數成正比,積定變數成反比;判斷四數成比例,兩端積等中間積。

11.根式和無理式
表示方根代數式,都可稱其為根式;根式異於無理式,被開方式無限制;

無理式都是根式,區分它們有標志;被開方式有字母,才能稱為無理式。

12.最簡根式的條件
最簡根式三條件:號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。

Ⅱ、方程與不等式
1.解一元一次方程
已知未知鬧分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

先去分母再括弧,移項合並同類項;系數化1還沒好,回代值等才算了。

2.解一元一次不等式
去分母、去括弧,移項時候要變號;同類項、合並好,再把系數來除掉;

兩邊除(以)負數時,不等號改向別忘了。

3.解一元一次絕對值不等式
大(魚)於(吃)取兩邊,小(魚)於(吃)取中間。

4.解一元一次不等式組
大大取較大,小小取較小;大小、小大取中間,大大,小小無處找。

5.解分式方程
同乘最簡公分母,化成整式寫清楚;求得解後須驗根,原(根)留、增(根)舍別含糊。

6.解一元二次方程
方程沒有一次項,直接開方最理想;如果缺少常數項,因式分解沒商量;

b、c相等都為零,等根是零不要忘;b、c同時不為零,因式分解或配方;

也可直接套公式,因題而異擇良方。

7.解一元二次不等式
首先化成一般式,構造函數第二站;判別式值若非負,曲線橫軸有交點;

a正開口它向上,大於零則取兩邊;代數式若小於零,解集交點數之間;

方程若無實數根,口上大零解為全;小於零將沒有解,開口向下正相反。

Ⅲ、函數
1.坐標繫上坐標點
坐標平面點(x,y),橫在前來縱在後;X軸上y為0,x為0在Y軸。

象限角的平分線,坐標特徵有特點;一、三橫縱都相等,二、四橫縱恰相反。

平行某軸的直線,點的坐標有講究;平行於X軸,縱等橫不同;平行於Y軸,橫等縱不同。

對稱點坐標要記牢,相反位置莫混淆;X軸對稱y相反,Y軸對稱X反;原點對稱最好記,橫縱坐標變符號。

2.函數自變數的取值
分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

3.判斷正比例函數:
判斷正比例函數,檢驗當分兩步走;一量表示另一量, 是與否;若有還要看取值,全體實數都要有。

4.正比例函數( )圖像與性質
正比函數很簡單,經過原點一直線;K正一三負二四,變化趨勢記心間;

K正左低右邊高,同大同小向爬山;K負左高右邊低,一大另小下山巒。

5.反比例函數( )圖像與性質
反比函數雙曲線,所有都不過原點;K正一三負二四,兩軸是它漸近線;

K正左高右邊低,一三象限滑下山;K負左低右邊高,二四象限如爬山。

6.一次函數( )圖像與性質
一次函數是直線,圖像經過仨象限;兩個系數k與b,作用之大莫小看;

k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;

k是斜率定夾角,b與Y軸來相見;k的絕對值越大,線離橫軸就越遠。

7.一次函數( )圖像與性質
二次方程零換y,二次函數便出現;全體實數定義域,圖像叫做拋物線;

拋物線有對稱軸,兩邊單調正相反;開口、頂點和交點,它們確定圖象現;

開口、大小由a斷,c與Y軸來相見;b的符號較特別,符號與a相關聯;

頂點非高即最低。上低下高很顯眼,如果要畫拋物線,平移也可去描點;

提取配方定頂點,兩條途徑再挑選,若要平移也不難,先畫基礎拋物線,

列表描點後連線,平移規律記心間,左加右減括弧內,號外上加下要減。

8.三角函數
三角函數的增減性:正增余減。

特殊三角函數值(30度、45度、60度)記憶:正弦(值)、餘弦(值)分母2、正切(值)、餘切(值)分母3。

二、空間與圖形
Ⅰ、線與角
1.直線、射線與線段
直線射線與線段,形狀相似有關聯;直線長短不確定,可向兩方無限延;

射線僅有一端點,反向延長成直線;線段定長兩端點,雙向延伸變直線。

兩點定線是共性,組成圖形最常見。

2.角
一點出發兩射線,組成圖形叫做角;共線反向是平角,平角之半叫直角;

平角兩倍成周角,小於直角叫銳角;直平之間是鈍角,平周之間叫優角;

和為直角叫互余,和為平角叫互補。

3.兩點間距離公式
同軸兩點求距離,大減小數就為之;與軸等距兩個點,間距求法亦如此;

平面任意兩個點,橫縱標差先求值;差方相加開平方,距離公式要牢記。

Ⅱ、平面圖形
1.平行四邊形的判定
要證平行四邊形,兩個條件才能行;一證對邊都相等,或證對邊都平行;

一組對邊也可以,必須相等且平行;

對角線,是個寶,互相平分「跑不了」;對角相等也有用,「兩組對角」才能成。

2.矩形的判定
任意一個四邊形,三個直角成矩形;對角線等互平分,四邊形它是矩形。

已知平行四邊形,一個直角叫矩形;兩對角線若相等,理所當然為矩形。

3.菱形的判定
任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形;

已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形。

4.梯形的輔助線
移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在「△」現;

延長兩腰交一點,「△」中有平行線;作出梯形兩高線,矩形顯示在眼前;

已知腰上一中線,莫忘作出中位線。

5.三角形的輔助線
題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連;

三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。

6.圓內的正多邊形
份相等分割圓,n值必須大於三,依次連接各分點,內接正n邊形在眼前.

7.圓中比例線段
遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替;

遇等比,改等積,引用射影和圓冪;平行線,轉比例,兩端各自找聯系。

8.圓的證明
圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;

直徑是圓最大弦,直圓周角立上邊;它若垂直平分弦,垂徑、射影響耳邊;

還有與圓有關角,勿忘相互有關聯;圓周、圓心、弦切角,細找關系把線連;

同弧圓周角相等,證題用它最多見;圓中若有弦切角,夾弧找到就好辦;

圓有內接四邊形,對角互補記心間;外角等於內對角,四邊形定內接圓;

直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;

要想證明圓切線,垂直半徑過外端;直線與圓有共點,證垂直來半徑連;

直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;

如果遇到圓與圓,弄清位置很關鍵;兩圓相切作公切,兩圓相交連公弦;

經過分點做切線,切線相交n個點;n個交點做頂點,外切正n邊形便出現;

正n邊形很美觀,它有內接,外切圓;內接、外切都唯一,兩圓還是同心圓;

它的圖形軸對稱,n條對稱軸都過圓心點;如果n值為偶數,中心對稱很方便;

正n邊形做計算,邊心距、半徑是關鍵;內切、外接圓半徑,邊心距、半徑分別換;

分成直角三角形2n個整,依此計算便簡單.

9.幾何圖形中的輔助線
人說幾何很困難,難點就在輔助線; 輔助線,如何添?把握定理和概念;

還要刻苦加鑽研,找出規律憑經驗; 圖中有角平分線,可向兩邊作垂線;

也可將圖對折看,對稱以後關系現;角平分線平行線,等腰三角形來添;

角平分線加垂線,三線合一試試看; 線段垂直平分線,常向兩端把線連;

要證線段倍與半,延長縮短可試驗; 三角形中兩中點,連接則成中位線;

三角形中有中線,延長中線等中線; 平行四邊形出現,對稱中心等分點;

梯形裡面作高線,平移一腰試試看; 平行移動對角線,補成三角形常見;

證相似,比線段,添線平行成習慣; 等積式子比例換,尋找線段很關鍵;

直接證明有困難,等量代換少麻煩; 斜邊上面作高線,比例中項一大片。

半徑與弦長計算,弦心距來中間站; 圓上若有一切線,切點圓心半徑連;

切線長度的計算,勾股定理最方便; 要想證明是切線,半徑垂線仔細辨;

是直徑,成半圓,想成直角徑連弦;弧有中點圓心連,垂徑定理要記全;

圓周角邊兩條弦,直徑和弦端點連;弦切角邊切線弦,同弧對角等找完;

要想作個外接圓,各邊作出中垂線;還要作個內接圓,內角平分線夢圓;

如果遇到相交圓,不要忘作公共弦;內外相切的兩圓,經過切點公切線;

若是添上連心線,切點肯定在上面;要作等角添個圓,證明題目少困難;

輔助線,是虛線,畫圖注意勿改變;假如圖形較分散,對稱旋轉去實驗;

基本作圖很關鍵,平時掌握要熟練;解題還要多心眼,經常總結方法顯;

切勿盲目亂添線,方法靈活應多變;分析綜合方法選,困難再多也會減;

虛心勤學加苦練,成績上升成直線;幾何證題難不難,關鍵常在輔助線;

知中點、作中線,中線處長加倍看;底角倍半形分線,有時也作處長線;

線段和差及倍分,延長截取證全等;公共角、公共邊,隱含條件須挖掘;

全等圖形多變換,旋轉平移加折疊;中位線、常相連,出現平行就好辦;

四邊形、對角線,比例相似平行線;梯形問題好解決,平移腰、作高線;

兩腰處長義一點,亦可平移對角線;正餘弦、正餘切,有了直角就方便;

特殊角、特殊邊,作出垂線就解決;實際問題莫要慌,數學建模幫你忙;

圓中問題也不難,下面我們慢慢談;弦心距、要垂弦,遇到直徑周角連;

切點圓心緊相連,切線常把半徑添;兩圓相切公共線,兩圓相交公共弦;

切割線,連結弦,兩圓三圓連心線;基本圖形要熟練,復雜圖形多分解;

以上規律屬一般,靈活應用才方便。

⑷ 初中七年級數學知識點歸納整理

數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中 七年級數學 知識點歸納,供大家閱讀參考。

初中七年級數學知識點歸納

第一章 相交線與平行線

一、知識框架

二、知識概念

1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

4.平行線:在同一平面內,不相交的兩條直線叫做平行線。

5.同位角、內錯角、同旁內角:

同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

內錯角:∠2與∠6像這樣的一對角叫做內錯角。

同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。

6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

8.對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。

9.定理與性質

對頂角的性質:對頂角相等。

10垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

11.平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

12.平行線的性質:

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內錯角相等,兩直線平行。

判定3:同旁內角相等,兩直線平行。

本章使學生了解在平面內不重合的兩條直線相交與平行的兩種位置關系,研究了兩條直線相交時的形成的角的特徵,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特徵以及有關圖形平移變換的性質,利用平移設計一些優美的圖案. 重點:垂線和它的性質,平行線的判定 方法 和它的性質,平移和它的性質,以及這些的組織運用. 難點:探索平行線的條件和特徵,平行線條件與特徵的區別,運用平移性質探索圖形之間的平移關系,以及進行圖案設計。

第二章 平面直角坐標系

一.知識框架

二.知識概念

1.有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)

2.平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4.坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。

5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

平面直角坐標系是數軸由一維到二維的過渡,同時它又是學習函數的基礎,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數結合起來,體現了數形結合的思想。掌握本節內容對以後學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發,通過對平面上的點的位置確定發展學生創新能力和應用意識。

第三章 三角形

一.知識框架

二.知識概念

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

12.公式與性質

三角形的內角和:三角形的內角和為180°

三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

多邊形的外角和:多邊形的內角和為360°。

多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

(2)n邊形共有 條對角線。

三角形是初中數學中幾何部分的基礎圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發現和探索其中的知識奧秘。注重培養學生正確的數學情操和幾何思維能力。

第四章 二元一次方程組

一.知識結構圖

二、知識概念

1.二元一次方程:含有兩個未知數,並且未知數的指數都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。

3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。

4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。

5.消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想。

6.代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。

7.加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法。

本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養學生對概念的理解和完整性和深刻性,使學生掌握好二元一次方程組的兩種解法. 重點:二元一次方程組的解法,列二元一次方程組解決實際問題. 難點:二元一次方程組解決實際問題

第五章 不等式與不等式組

一.知識框架

二、知識概念

1.用符號「<」「>」「≤ 」「≥」表示大小關系的式子叫做不等式。

2.不等式的解:使不等式成立的未知數的值,叫做不等式的解。

3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

5.一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。

7.定理與性質

不等式的性質:

不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。

不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。

不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。

本章內容要求學生經歷建立一元一次不等式(組)這樣的數學模型並應用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創新精神和應用數學的意識。

第六章 數據的收集、整理與描述

一.知識框架

全面調查

抽樣調查

收集數據

描述數據

整理數據

分析數據

得出結論

二.知識概念

1.全面調查:考察全體對象的調查方式叫做全面調查。

2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查。

3.總體:要考察的全體對象稱為總體。

4.個體:組成總體的每一個考察對象稱為個體。

5.樣本:被抽取的所有個體組成一個樣本。

6.樣本容量:樣本中個體的數目稱為樣本容量。

7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。

8.頻率:頻數與數據總數的比為頻率。

9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。

本章要求通過實際參與收集、整理、描述和分析數據的活動,經歷統計的一般過程,感受統計在生活和生產中的作用,增強學習統計的興趣,初步建立統計的觀念,培養重視調查研究的良好習慣和科學態度。

數學考試拿高分的竅門

一、對照法

如何正確理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

二、公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

三、比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

四、分類法

根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。 分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。

怎樣才能學好數學

1.打破沙鍋問到底的執著和溫故知新的毅力,被某個知識點或者某道題難住,就把它擱置,問題越來越多就積重難返了。

2.不會的問題當即解決最好,解決的方法有查資料或者請教他人等;對已經解決的問題和重要知識點,要定期復習,復習時要思考有無更好的方法。

3.學會一題多解,從各個方面來了解題目的含義,鍛煉孩子的變式思維;要敢於創新,老師可在講課過程中故意出錯,讓學生來思考,矯正,使學生處於主動思考的狀態。


初中七年級數學知識點歸納整理相關 文章 :

★ 初一數學知識點梳理歸納

★ 七年級數學知識點整理大全

★ 初一數學的知識點梳理

★ 初一數學知識點歸納梳理

★ 初一數學學習方法總結

★ 初一數學的知識點歸納

★ 初一數學考試知識點總結

★ 數學七年級下冊知識點總結之變數之間的關系

★ 七年級數學上冊知識點總結歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑸ 初二數學知識點總結歸納大全

很多同學在復習初二數學時,因為之前沒有做過系統的總結,導致復習知識點分散,復習效率低下。下面是由我為大家整理的「初二數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。

初二數學知識點總結歸納大全

第一章 勾股定理

定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等於斜邊的平方。

判定:如果三角形的三邊長a,b,c滿足a +b = c ,那麼這個三角形是直角三角形。 定義:滿足a +b =c 的三個正整數,稱為勾股數。

第二章 實數

定義:任何有限小數或無限循環小數都是有理數。無限不循環小數叫做無理數 (有理數總可鉛沒慧以用有限小數或無限循環小數表示)

一般地,如果一個正數x的平方等於a,那麼這個正數x就叫做a的算術平方根。 特別地,我們規定0的算術平方根是0。

一般地,如果一個數x的平方等於a,那麼這個數x就叫做a的平方根(也叫二次方根) 一個正數有兩個平方根;0隻有一個平方根,它是0本身;負數沒有平方根。 求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。

一般地,如果一個數x的立方等於a,那麼這個數x就叫做a的立方根(也叫做三次方根)。 正數的立方根是正數;0的立方根是0;負數的立方根是負數。 求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。 有理數和無理數統稱為實數,即實數可以分為有理數和無理數。

每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數。即實數和數軸上的點是一一對應的。

在數軸上,右邊的點表示的數比左邊的點表示的數大。

第三章 圖形的平移與旋轉

定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形的形狀和大小。

經過平移,對應點所連的線段平行也相等;對應線段平行且相等,對應角相等。

在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形的大小和形狀。

任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。

第四章 四邊形性質探索

定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。

平行四邊形: 兩組對邊分別平行的四邊形.。 對邊相等,對角相等,對角線互相平分。 兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形

菱形 :一組鄰邊相等的平行四邊形 „„(平行四邊形的性質)。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。 一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。

矩形: 有一個內角是直角的平行四邊形 „„(平行四邊形的性質)。對角線相等,四個角都是直角。 有一個內角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。

正方形: 一組鄰邊相等的矩形。 正方形具有平行四邊形、菱形、矩形的一切性質。 一組鄰邊相等的矩形是正方形,一個內角是直角的菱形是正方形。

梯形: 一組對邊平行而另一組對邊不平行的四邊形。 一組對邊平行而另一組對邊不平行的四邊形是梯形 。 等腰梯形 :兩條腰相等的梯形。 同一底上的兩個內角相等,對角線相等。 兩腰相等的梯形是等腰梯形,

同一底上兩個內角相等的梯形是等腰梯形 。

直角梯形 :一條腰和底垂直的梯形。 一條腰和底垂直的梯形是直角梯形。

察盯多邊形:在平面內,由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內角和等於(n-2)×180

多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。 多邊形的外角和都等槐答於360°。三角形、四邊形和六邊形都可以密鋪。

定義:在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。

中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。

第五章 位置的確定

位置表示方法:方位角加距離;坐標;經緯度„„

定義:在平面內,兩條互相垂直且有公共原點的書軸組成平面直角坐標系。

通常,兩條數軸分別至於水平位置與鉛直位置,取向右與向上方向分別為兩條數軸的正方向。水平的數軸叫做x軸或橫軸,鉛直的數軸叫做y軸或縱軸,x軸和y統稱坐標軸,它們的公共原點O稱為直角坐標系的原點。

圖形隨坐標變化:向上/下/左/右平移X個單位長度、橫向/縱向拉長X倍、橫向/縱向壓縮X倍、放大/縮小了X倍、關於x/y軸成軸對稱、關於原點O成中心對稱„„

第六章 一次函數

定義:一般地,在某個變化過程中,有兩個變數x和y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中是x自變數,y是因變數。

若兩個變數x,y間的關系式可以表示成y=kx+b(k,b為常數,k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。

把一個函數的自變數x與對應的因變數y的值分別作為點的橫坐標和縱坐標,在直角坐標系中描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。 正比例函數y=kx的圖象是經過原點(0,0)的一條直線。 在一次函數y=kx+b中,

當k>0時,的值隨值的增大而增大; 當k<0時,的值隨值的增大而減小。

第七章 二元一次方程組

定義:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。 像這樣含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。 適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。 二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。 解二元一次方程組的基本思路是「消元」——把「二元」變為「一元」。 以一個未知數代另一個未知數的解法稱為代入消元法,簡稱代入法。 通過兩式加減消去其中一個未知數的解法稱做加減消元法,簡稱加減法。

第八章 數據的代表

定義:一般地,對於n個數X1,X2,„Xn,我們把1/n(X1+X2+„+Xn)叫做這個數的算術平均數,簡稱平均數,記為X。

為A的三項測試成績的加權平均數。

一般地,個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數,一組數據出現次數最多的那個數據叫做這組數據的眾數。

拓展閱讀:初中數學提升方法

1、課前預習,認真聽講

為什麼要預習,你要知道這一講哪些內容你一開始看不懂,那上課的時候對於這個問題就要認真聽,這樣聽講更有針對性,比坐在教室里純被動的聽講效率高太多,自然,最終的效果也要好太多。

2、課後刷題,總結歸納

提高數學成績必須要刷題,在刷題量沒有達到一定程度之前,是沒有談方法和技巧的必要的。怎麼刷題?其實每天的家庭作業就是刷題,一定要認真完成,如果還有多的時間,那麼可以刷往年的真題試卷,注意!一定是刷真題,刷真題不是說整套整套刷,你就刷平時經常扣分的那幾題。等你把刷過的題都歸納清楚,你的水平肯定會得到大幅度提升。

3、不懂就問,消除盲區

不少同學會發現一個問題,就是聽講也聽懂了,做題也不少,但是遇到新題還是不會。遇到新題不會的根本原因還是因為對原有知識點的理解不夠深入,不能舉一反三,那怎麼辦,遇到不懂的問題要第一時間解決,可以問老師、問同學、問搜題軟體等等,核心宗旨就是不能留下知識盲區,一點疑惑都不能留,並且要第一時間解決,不能拖,一拖就忘了。

⑹ 初二數學知識點總結歸納

初中數學學習整理知胡輪識點是非常重要的,快來和我一起看看吧。下面是由我為大家整理的「初二數學知識點總結歸納」,僅供參考,歡迎大家閱讀。

初二數學知識點總結歸納

一、勾股定理

1、勾股定理

直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。

3、勾股數

滿足的三個正整數,稱為勾股數。

常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。

二、證明

1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。

2、三角形內角和定理:三角形三個內角的和等於180度。

(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。

(2)三角形的外角與它相鄰的內角是互為補角。

3、三角形的外角與它不相鄰的內角關系

(1)三角形的一個外角等於和它不相鄰的兩個內角的和。

(2)三角形的一個外角大於任何一個和它不相鄰的內角。

4、證明一個命題是真命題的基本步驟

(1)根據題意,畫出圖形。

(2)根據條件、結論,結合圖形,寫出已知、求證。

(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。

三、數據的分析

1、平均數

①一般地,對於n個數x1x2...xn,我們把(x1+x2+???+xn)叫做這n個數的算數平均數,簡稱平均數記為。

②在實際問題中,一組數據里的各個數據的「重要程度」未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數。

2、中位數與眾數

①中位數:一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。

②一組數據中出現次數最多的那個數據叫做這組數據的眾數。

③平均數、中位數和眾數都是描述數據集中趨勢的統計量。

④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。

⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息。

⑥各個數據重復次數大致相等時,眾數往往沒有特別意義。

3、從統計圖分析數據的集中趨勢

4、數據的離散程度

①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對於集中趨勢的偏離情況。一組數據中數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量。

②數學上,數據的離散程度還可以用方差或標准差刻畫。

③方差是各個數據與平均數差的平方的平均數。

④其中是x1,x2.....xn平均數,s2是方差,而標准差就是方差的算術平方根。

⑤一般而言,一組數據的極差、方差或標准差越小,這組數據就越穩定。

拓展閱讀:怎麼樣學好數學的技巧

1.認真「聽」的習慣。

為了教和學的同步,教師應要求學生在課堂上集中思想,專心聽老師講課,認真聽同學發言,抓住重點、難點、疑點聽,邊聽邊思考租悔,對中、高年級學生提倡邊聽邊做聽課筆記。

2.積極「想」的習慣。

積極思考老師和同學提出的問題,使自己始終置身於教學活動之中,這是提高學習質量和效率的重要保證。學生弊做正思考、回答問題一般要求達到:有根據、有條理、符合邏輯。隨著年齡的升高,思考問題時應逐步滲透聯想、假設、轉化等數學思想,不斷提高思考問題的質量和速度。

3.仔細「審」的習慣。

審題能力是學生多種能力的綜合表現。教師應要求學生仔細閱讀教材內容,學會抓住字眼,正確理解內容,對提示語、旁註、公式、法則、定律、圖示等關鍵性內容更要認真推敲、反復琢磨,准確把握每個知識點的內涵與外延。建議教師們經常進行「一字之差義差萬」的專項訓練,不斷增強學生思維的深刻性和批判性。

4.獨立「做」的習慣。

練習是教學活動的重要組成部分和自然延續,是學生最基本、最經常的獨立學習實踐活動,還是反映學生學習情況的主要方式。教師應教育學生對知識的理解不盲從優生看法,不受他人影響輕易改變自己的見解;對知識的運用不抄襲他人現成答案;課後作業要按質、按量、按時、書寫工整完成,並能作到方法最佳,有錯就改。

5.善於「問」的習慣。

俗話說:「好問的孩子必成大器」。教師應積極鼓勵學生質疑問難,帶著知識疑點問老師、問同學、問家長,大力提倡學生自己設計數學問題,大膽、主動地與他人交流,這樣既能融洽師生關系,增進同學友情,又可以使學生的交際、表達等方面的能力逐步提高。

6.勇於「辯」的習慣。

討論和爭辯是思維最好的媒介,它可以形成師生之間、同學之間多渠道、廣泛的信息交流。讓學生在爭辯中表現自我、互相啟迪、交流所得、增長才幹,最終統一對真知的認同。

⑺ 七年級數學知識點總結

高效的學習,要學會給自己定定目標,這樣學習會有一個方向;然後要學會梳理自身學習情況,以課本為基礎,結合自己做的筆記、試卷、掌握的薄弱環節、存在的問題等,合理的分配時間,有針對性、具體的去一點一點的攻克、落實。本篇 文章 是我為您整理的《 七年級數學 知識點 總結 歸納》,供大家借鑒。

↓↓↓點擊獲取「七年級知識點」↓↓↓

★ 初一數學上冊知識點歸納 ★

★ 七年級下數學知識點總結 ★

★ 初一地理上冊知識點總結 ★

★ 初一下冊歷史知識點歸納 ★

七年級數學知識點總結1

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

七年級數學知識點總結2

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級數學知識點總結3

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的 方法 :

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。


七年級數學知識點總結相關文章:

★ 七年級數學知識點整理大全

★ 2017年中考初中數學知識點總結

★ 初中數學圓的知識點歸納

★ 初中部數學學習方法總結

★ 初一數學的知識點歸納

★ 初中數學分式知識點總結

★ 初一數學基礎知識點梳理

★ 七年級數學單元知識點

★ 初一數學知識點歸納與學習方法

★ 初一數學知識點歸納華師版

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();