當前位置:首頁 » 基礎知識 » 九年級數學下冊第二章的知識點總結
擴展閱讀
數學小知識20個 2025-02-23 13:35:35

九年級數學下冊第二章的知識點總結

發布時間: 2025-02-23 06:08:18

A. 初三數學的知識點梳理

對世界上的一切學問與知識的掌握也並非難事,只要持之以恆地學習,努力掌握規律,達到熟悉的境地,就能融會貫通,運用自如。學習需要持之以恆。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

九年級下冊數學知識點歸納

★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆內容提要☆

一、圓的基本性質

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3.「三點定圓」定理

4.垂徑定理及其推論

5.「等對等」定理及其推論

6.與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.切線的性質(重點)

2.切線的判定定理(重點)

3.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理

3.兩圓的公切線:⑴定義⑵性質

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內切圓及性質

3.圓的外切四邊形、內接四邊形的性質

4.正多邊形及計算

中心角:初中數學復習提綱

內角的一半:初中數學復習提綱(右圖)

(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)

六、一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算 方法

6.圓柱、圓錐的側面展開圖及相關計算

初三下冊數學知識點 總結

一、銳角三角函數

正弦等於對邊比斜邊

餘弦等於鄰邊比斜邊

正切等於對邊比鄰邊

餘切等於鄰邊比對邊

正割等於斜邊比鄰邊

二、三角函數的計算

冪級數

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.

泰勒展開式(冪級數展開法)

f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...

三、解直角三角形

1.直角三角形兩個銳角互余。

2.直角三角形的三條高交點在一個頂點上。

3.勾股定理:兩直角邊平方和等於斜邊平方

四、利用三角函數測高

1、解直角三角形的應用

(1)通過解直角三角形能解決實際問題中的很多有關測量問.

如:測不易直接測量的物體的高度、測河寬等,關鍵在於構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.

(2)解直角三角形的一般過程是:

①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).

②根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.

初三數學學習技巧

重視構建知識網路——宏觀把握數學框架

要學會構建知識網路,數學概念是構建知識網路的出發點,也是數學中考[微博]考查的重點。因此,我們要掌握好代數中的數、式、不等式、方程、函數、三角比、統計和幾何中的平行線、三角形、四邊形、圓的概念、分類、定義、性質和判定,並會應用這些概念去解決一些問題。

重視夯實數學雙基——微觀掌握知識技能

在復習過程中夯實數學基礎,要注意知識的不斷深化,重視強化題組訓練——感悟數學思想方法

除了做基礎訓練題、平面幾何每日一題外,還可以做一些綜合題,並且養成解題後 反思 的習慣。反思自己的思維過程,反思知識點和解題技巧,反思多種解法的優劣,反思各種方法的縱橫聯系。而總結出它所用到的數學思想方法,並把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。逐步學會觀察、試驗、分析、猜想、歸納、類比、聯想等思想方法,主動地發現問題和提出問題。

重視建立「病例檔案」——做到萬無一失

准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常地拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,這樣到中考時你的數學就沒有什麼「病例」了。我們要在教師的指導下做一定數量的數學習題,積累解題 經驗 、總結解題思路、形成解題思想、催生解題靈感、掌握 學習方法 。


初三數學的知識點梳理相關 文章 :

★ 初三數學知識點歸納人教版

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 九年級上冊數學知識點歸納整理

★ 初三數學中考復習重點章節知識點歸納

★ 初三數學知識點歸納

★ 最新初三數學知識點總結大全

★ 初三中考數學知識點歸納總結

★ 初三數學重點知識點歸納

B. 初三數學知識點整理歸納

學習的成功與失敗原因是多方面的,要首先從自己身上找原因,才能受到鼓舞,找出努力的方向。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。

初三年級下學期數學知識點

【二次函數的圖像與性質】

二次函數的概念:一般地,形如ax^2+bx+c=0的函數,叫做二次函數。

這里需要強調:和一元二次方程類似,二次項系數a≠0,而b,c可以為零.二次函數的定義域是全體實數.

二次函數圖像與性質口訣

二次函數拋物線,圖象對稱是關鍵;

開口、頂點和交點,它們確定圖象限;

開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

【二次函數的應用】

在公路、橋梁、隧道、城市建設等很多方面都有拋物線型;生產和生活中,有很多「利潤」、「用料最少」、「開支最節約」、「線路最短」、「面積」等問題,它們都有可能用到二次函數關系,用到二次函數的最值。

那麼解決這類問題的一般步驟是:

第一步:設自變數;

第二步:建立函數解析式;

第三步:確定自變數取值范圍;

第四步:根據頂點坐標公式或配方法求出最值(在自變數的取值范圍內)。

初 三年級數學 知識點

【函數的圖像與一元二次方程】

1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.

6.用待定系數法求二次函數的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

初三年級數學知識點蘇科版

一.知識框架

二.知識概念

1.圓:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意

意兩點的線段叫做弦。經過圓心的弦叫做直徑。

3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

4.內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。

5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。

6.圓錐側面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。

7.圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO

8.直線與圓有3種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有公共點為相切,這條直線叫做圓的切線,這個的公共點叫做切點。

9.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r

10.切線的判定方法:經過半徑外端並且垂直於這條半徑的直線是圓的切線。

11.切線的性質:(1)經過切點垂直於這條半徑的直線是圓的切線。(2)經過切點垂直於切線的直線必經過圓心。(3)圓的切線垂直於經過切點的半徑。

12.垂徑定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。

13.有關定理:

平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧.

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

在同圓或等圓中,同弧等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半.

半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

14.圓的計算公式1.圓的周長C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長l=nπr/180

15.扇形面積S=π(R^2-r^2)5.圓錐側面積S=πrl


初三數學知識點整理歸納相關 文章 :

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 初三數學知識點歸納人教版

★ 初三數學知識點上冊總結歸納

★ 初三數學知識點歸納

★ 初三數學中考復習重點章節知識點歸納

★ 初三數學知識點整理

★ 最新初三數學知識點總結大全

★ 九年級上冊數學知識點歸納整理

★ 初三數學復習知識點總結

C. 九年級數學下冊知識點歸納

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的 九年級數學 知識點,希望對大家有所幫助。

九年級數學知識點

反比例函數

形如y=k/x(k為常數且k≠0,x≠0,y≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

當K>0時,反比例函數圖像經過一,三象限,是減函數(即y隨x的增大而減小)

當K<0時,反比例函數圖像經過二,四象限,是增函數(即y隨x的增大而增大)

由於反比例函數的自變數和因變數都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。

1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/x(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

初三數學復習資料

因式分解的方法

1.十字相乘法

(1)把二次項系數和常數項分別分解因數;

(2)嘗試十字圖,使經過十字交叉線相乘後所得的數的和為一次項系數;

(3)確定合適的十字圖並寫出因式分解的結果;

(4)檢驗。

2.提公因式法

(1)找出公因式;

(2)提公因式並確定另一個因式;

①找公因式可按照確定公因式的方法先確定系數再確定字母;

②提公因式並確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式後剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式;

③提完公因式後,另一因式的項數與原多項式的項數相同。

3.待定系數法

(1)確定所求問題含待定系數的一般解析式;

(2)根據恆等條件,列出一組含待定系數的方程;

(3)解方程或消去待定系數,從而使問題得到解決。

數學學習方法 技巧

初三數學學習方法一

上課。課前准備好上課所需的課本、 筆記本 和其他文具,並抓緊時間簡要回憶和復習上節課所學的內容。要帶著強烈的求知慾上課,希望在課上能向老師學到新知識,解決新問題。上課時要集中精力聽講,上課鈴一響,就應立即進入積極的學習狀態,有意識地排除分散注意力的各種因素。聽課要抬頭,眼睛盯著老師的一舉一動,專心致志聆聽老師的每一句話。要緊緊抓住老師的思路,注意老師敘述問題的邏輯性,問題是怎樣提出來的,以及分析問題和解決問題的方法步驟。上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。「學然後知不足」,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。

上課聽講很重要,45分鍾要實效:你不要以為我在開玩笑,上課聽講誰還不會啊!其實並不然,我說的聽講則是完完全全、認認真真、仔仔細細……來聽講。對於課堂上老師所講的每一個公式,每一條定理都要深究其源,這樣即便在考試當中忘了公式,也可以很好的解決問題,不至於內心的慌亂和緊張。另外要充分利用好課堂這短短的45分鍾的時間,盡量在課上將所學習的知識吸收,這樣回到家後才能進一步展開接下來的學習,節約時間。

初三數學學習方法二

讀題時候的認真也是很重要的,想必大家都有這樣的經歷,在做題的時候,做了半天都沒做出來,也許是不經意的瞥了一下題目,或者是老師同學的提醒,突然發現出現了某某條件或者某某關系。於是題目很快就輕易解決,審題不清往往會導致錯誤的結果,或者浪費時間,特別是在考試中,浪費了時間就很可能做不完題目,導致丟分。

全面全力夯實基礎:切實掌握選擇填空題的解題規律,在歷次測驗中確保基礎部分得滿分,也就是把該得的分數確實滿分拿到手。在一輪復習中,所有同學都要集中全力闖過選擇填空題的基礎關,否則在高考中很難越過一百分。現實中,很多同學從一開始便投入到漫無目的的、五花八門的、各式各樣的題海中。為了在一輪復習中達到此目的,基礎稍差些的同學完全可以主動放棄大型的、復雜的綜合體的演練,把節省下來的時間和精力再次投入到選擇填空題上來,以此進一步夯實基礎;而基礎好一些的同學,也不要把太多的、主要的精力大面積地投入到解答題上來,而是要分專題、分階段每天都少量地但是細致地深入地研究一兩道大解答題,在解答題上慢慢地、逐步地積累解題 經驗 和解題規律,切不可把攤子鋪大。要知道解答題的解題經驗和解題規律積累是一個逐步的、漫漫的由量變到質變的過程,堅持重於沖擊。

初三數學學習方法三

多看例題:細心的朋友會發現,老師在講解基礎內容之後,總是給我們補充一些課外例、習題,這是大有裨益的,我們學的概念、定理,一般較抽象,要把它們具體化,就需要把它們運用在題目中,由於我們剛接觸到這些知識,運用起來還不夠熟練,這時,例題就幫了我們大忙,我們可以在看例題的過程中,將頭腦中已有的概念具體化,使對知識的理解更深刻,更透徹,由於老師補充的例題十分有限,所以我們還應自己找一些來看,看例題,還要注意以下幾點:

不能只看皮毛,不看內涵,我們看例題,就是要真正掌握其方法,建立起更寬的解題思路,如果看一道就是一道,只記題目不記方法,看例題也就失去了它本來的意義,每看一道題目,就應理清它的思路,掌握它的思維方法,再遇到類似的題目或同類型的題目,心中有了大概的印象,做起來也就容易了,不過要強調一點,除非有十分的把握,否則不要憑借主觀臆斷,那樣會犯經驗主義錯誤,走進死胡同的。

九年級數學下冊知識點歸納相關 文章 :

★ 人教版九年級數學知識點歸納

★ 九年級數學下冊圓的知識點整理

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 初三數學知識點歸納人教版

★ 最新初三數學知識點總結大全

★ 初中九年級數學知識點總結歸納

★ 初三數學基礎知識點總結

★ 初三數學知識點總結

★ 初三數學知識點整理

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

D. 九年級數學下冊知識點

課堂臨時報佛腳,不如 課前預習 好。其實任何學科都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的 九年級數學 知識點,希望對大家有所幫助。

九年級下冊數學知識點歸納

★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆內容提要☆

一、圓的基本性質

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3.「三點定圓」定理

4.垂徑定理及其推論

5.「等對等」定理及其推論

6.與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.切線的性質(重點)

2.切線的判定定理(重點)

3.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理

3.兩圓的公切線:⑴定義⑵性質

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內切圓及性質

3.圓的外切四邊形、內接四邊形的性質

4.正多邊形及計算

中心角:初中數學復習提綱

內角的一半:初中數學復習提綱(右圖)

(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)

六、一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算方法

6.圓柱、圓錐的側面展開圖及相關計算

初三下冊數學知識點 總結

一、銳角三角函數

正弦等於對邊比斜邊

餘弦等於鄰邊比斜邊

正切等於對邊比鄰邊

餘切等於鄰邊比對邊

正割等於斜邊比鄰邊

二、三角函數的計算

冪級數

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.

泰勒展開式(冪級數展開法)

f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...

三、解直角三角形

1.直角三角形兩個銳角互余。

2.直角三角形的三條高交點在一個頂點上。

3.勾股定理:兩直角邊平方和等於斜邊平方

四、利用三角函數測高

1、解直角三角形的應用

(1)通過解直角三角形能解決實際問題中的很多有關測量問.

如:測不易直接測量的物體的高度、測河寬等,關鍵在於構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.

(2)解直角三角形的一般過程是:

①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).

②根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.

初三 數學學習方法

一、該記的記,該背的背,不要以為理解了就行

有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了「乘法九九表」,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9.9時用九個9去相加得出81就太不合算了。而用「九九八十一」得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。

二、幾個重要的數學思想

1、「方程」的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。

所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。

2、「數形結合」的思想

大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視「數形結合」的 思維訓練 ,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣。

九年級數學下冊知識點相關 文章 :

★ 九年級數學下冊圓的知識點整理

★ 人教版九年級數學知識點歸納

★ 最新初三數學知識點總結大全

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 初中初三數學知識點

★ 初三數學知識點歸納人教版

★ 九年級下學期期末數學復習資料

★ 初中九年級數學知識點總結歸納

★ 初三數學基礎知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

E. 初三數學知識點下冊

每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初三數學知識點的學習資料,希望對大家有所幫助。

九年級下冊數學知識點歸納

知識點1.概念

把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)

解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到.

(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.

(3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素無關.

知識點2.比例線段

對於四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那麼這四條線段叫做成比例線段,簡稱比例線段.

知識點3.相似多邊形的性質

相似多邊形的性質:相似多邊形的對應角相等,對應邊的比相等.

解讀:(1)正確理解相似多邊形的定義,明確「對應」關系.

(2)明確相似多邊形的「對應」來自於書寫,且要明確相似比具有順序性.

知識點4.相似三角形的概念

對應角相等,對應邊之比相等的三角形叫做相似三角形.

解讀:(1)相似三角形是相似多邊形中的一種;

(2)應結合相似多邊形的性質來理解相似三角形;

(3)相似三角形應滿足形狀一樣,但大小可以不同;

(4)相似用「∽」表示,讀作「相似於」;

(5)相似三角形的對應邊之比叫做相似比.

知識點5.相似三角的判定方法

(1)定義:對應角相等,對應邊成比例的兩個三角形相似;

(2)平行於三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構成的三角形與原三角形相似.

(3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那麼這兩個三角形相似.

(4)如果一個三角的兩條邊與另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似.

(5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似.

(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都相似.

知識點6.相似三角形的性質

(1)對應角相等,對應邊的比相等;

(2)對應高的比,對應中線的比,對應角平分線的比都等於相似比;

(3)相似三角形周長之比等於相似比;面積之比等於相似比的平方.

(4)射影定理

蘇教版數學九年級知識點

1二次根式:形如式子為二次根式;

性質:是一個非負數;

2二次根式的乘除:

3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並.

4海倫-秦九韶公式:,S是的面積,p為.

1:等號兩邊都是整式,且只有一個未知數,未知數的次是2的方程.

2配方法:將方程的一邊配成完全平方式,然後兩邊開方;

因式分解法:左邊是兩個因式的乘積,右邊為零.

3一元二次方程在實際問題中的應用

4韋達定理:設是方程的兩個根,那麼有

1:一個圖形繞某一點轉動一個角度的圖形變換

性質:對應點到中心的距離相等;

對應點與旋轉中心所連的線段的夾角等於旋轉角

旋轉前後的圖形全等.

2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關於這個點中心對稱;

中心對稱圖形:一個圖形繞某一點旋轉180度後得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;

3關於原點對稱的點的坐標

1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

2垂直於弦的直徑

圓是圖形,任何一條直徑所在的直線都是它的對稱軸;

垂直於弦的直徑平分弦,並且平方弦所對的兩條弧;

平分弦的直徑垂直弦,並且平分弦所對的兩條弧.

3弧、弦、圓心角

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

4圓周角

在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半;

半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑.

5點和圓的位置關系

點在圓外d>r

點在圓上d=r

點在圓內dR+r

外切d=R+r

相交R-r

初三數學復習資料

反比例函數、相似、銳角三角函數和投影與視圖。

(1)反比例函數:反比例函數的圖像和性質是中考數學命題的重要內容,試題新穎,題型靈活多樣,所佔分值約為3-8分,難易度屬於難。

【考察內容】

①會畫反比例函數的圖像,掌握基本性質。

②能根據條件確定反比例函數的表達式。

③能用反比例函數解決實際問題。

(2)相似:圖形的形似是平面幾何中極為重要的內容,是中考數學中的重點考察內容。一般分值約為6-12分,題型以選擇,填空,解答綜合題目為主,難易度屬於難。

【考察內容】

①相似三角形的性質和判別方法,是重點。

②相似多邊形的認識,黃金分割的應用。

③相似形與三角形,平行四邊形的綜合性題目是難點。

(3)銳角三角函數

(4)投影與視圖:分值一般為3-6分,試題以填空,選擇,解答的形式出現。

【考察內容】

①常見幾何體的三視圖

②常見幾何體的展開和折疊,展開和折疊是考試的 熱點 ,值得注意。

③利用相似結合平行投影和中心投影解決實際問題。

(不同地區分值不同,可供參考)

選擇題:3分一個,共14個,總分42分。

填空題:3分一個,共5個,總分15分。

解答題:共7題,總分63分。

(一)線段、角的計算與證明問題

中考中的簡答題一般是分為兩到三部分的。第一部分基本上都是簡單題和中檔題,目的在於考查基礎。第二部分第二部分往往就是開始拉分的中難題了。

(二)列方程(組)解決應用問題

在中考中,方程是初中數學當中最重要的部分,所以也是中考必考內容。從近年來中考來看,結合時事熱點考的比較多,所以還需要考生有一些實際生活 經驗 。

(三)閱讀理解問題

閱讀理解問題是中考中的一個亮點。閱讀理解往往是先給一個材料或介紹一個超綱的知識或給出一個針對某一種題目的解法,然後再給出條件出題。

(四)多種函數交叉綜合問題

初中接觸的函數主要有一次函數、二次函數和反比例函數。這類題目本身並不會太難,很少作為壓軸題目出現,一般都是作為一道中檔次題目出現來考查學生對函數的掌握。

(五)動態幾何

從歷年的中考來看,動態幾何往往作為壓軸的題目出現,得分率也是最低的。動態幾何一般分為兩類,一類是代數綜合方面,在坐標系中,動直線一般是用多種函數交叉求解。另一類是幾何綜合題,在梯形、矩形和三角形中設立動點,考查學生的綜合分析能力。

(六)圖形位置關系

中學數學當中,圖形位置關系主要包括點、線、三角形、矩形和正方形及它們之間的關系。在中考中會包括在函數、坐標系及幾何題中,其中最重要的是三角形的各種問題。


初三數學知識點下冊相關 文章 :

★ 初三數學下冊知識點歸納有哪些

★ 北師大初中數學知識點下冊

★ 最新初三數學知識點總結大全

★ 九年級數學下冊圓的知識點整理

★ 九年級下冊數學圓知識點提綱

★ 八年級下冊數學知識點整理

★ 人教版九年級數學知識點

★ 初三數學知識點梳理

★ 九年級數學知識點總結

★ 初中初三數學知識點

F. 初三數學下冊知識點

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些初三數學知識點,希望對大家有所幫助。

九年級下冊數學知識點歸納

知識點1.概念

把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)

解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到.

(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.

(3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素無關.

知識點2.比例線段

對於四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那麼這四條線段叫做成比例線段,簡稱比例線段.

知識點3.相似多邊形的性質

相似多邊形的性質:相似多邊形的對應角相等,對應邊的比相等.

解讀:(1)正確理解相似多邊形的定義,明確「對應」關系.

(2)明確相似多邊形的「對應」來自於書寫,且要明確相似比具有順序性.

知識點4.相似三角形的概念

對應角相等,對應邊之比相等的三角形叫做相似三角形.

解讀:(1)相似三角形是相似多邊形中的一種;

(2)應結合相似多邊形的性質來理解相似三角形;

(3)相似三角形應滿足形狀一樣,但大小可以不同;

(4)相似用「∽」表示,讀作「相似於」;

(5)相似三角形的對應邊之比叫做相似比.

知識點5.相似三角的判定方法

(1)定義:對應角相等,對應邊成比例的兩個三角形相似;

(2)平行於三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構成的三角形與原三角形相似.

(3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那麼這兩個三角形相似.

(4)如果一個三角的兩條邊與另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似.

(5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似.

(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都相似.

知識點6.相似三角形的性質

(1)對應角相等,對應邊的比相等;

(2)對應高的比,對應中線的比,對應角平分線的比都等於相似比;

(3)相似三角形周長之比等於相似比;面積之比等於相似比的平方.

(4)射影定理

九年級下冊數學知識點 總結

直線與圓的位置關系

①直線和圓無公共點,稱相離。AB與圓O相離,d>r。

②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等於0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關於x的方程

如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行於y軸(或垂直於x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,並且規定x1

當x=-C/Ax2時,直線與圓相離;

旋轉變換

1.概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

說明:(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;(2)旋轉過程中旋轉中心始終保持不動.(3)旋轉過程中旋轉的方向是相同的.(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的.⑤旋轉不改變圖形的大小和形狀.

2.性質:(1)對應點到旋轉中心的距離相等;

(2)對應點與旋轉中心所連線段的夾角等於旋轉角;

(3)旋轉前、後的圖形全等.

3.旋轉作圖的步驟和方法:(1)確定旋轉中心及旋轉方向、旋轉角;(2)找出圖形的關鍵點;(3)將圖形的關鍵點和旋轉中心連接起來,然後按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉後的圖形.

說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角.

初三 數學學習方法

1、「方程」的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。

所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。

2、「數形結合」的思想

大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視「數形結合」的 思維訓練 ,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣。

3、「對應」的思想

「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。這就是運用「對應」的思想和方法來解題。初二、初三我們還將看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應。「對應」的思想在今後的學習中將會發揮越來越大的作用

初三數學下冊知識點相關 文章 :

★ 九年級數學知識點下冊

★ 九年級下冊數學知識點歸納

★ 最新初三數學知識點總結大全

★ 九年級數學下冊圓的知識點整理

★ 人教版初三數學知識點

★ 初三數學知識點總結

★ 九年級下學期期末數學復習資料

★ 初三年級下冊數學知識點歸納總結

★ 人教版初三數學知識點復習資料備戰中考

★ 初三數學學習方法指導與學習方法總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

G. 人教版初三數學知識點歸納

初三數學知識點歸納人教版有哪些?初中數學學習是對學生邏輯計算能力的培養,學好初三數學的關鍵就在於要適時適量地進行 總結 歸類,下面是我整理的初三數學知識點,歡迎大家閱讀學習!

初三數學知識點總結

一、 直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從圖形、表示法、界限、端點個數、基本性質等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用線段的基本性質論證三角形兩邊之和大於第三邊)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示 方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明直角三角形中斜邊大於直角邊)

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、 三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②線的交點-三角形的心③性質

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法-反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、 四邊形

分類表:

1.一般性質(角)

⑴內角和:360

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的`四邊形各邊中點得矩形。

⑶外角和:360

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形平行四邊形矩形正方形

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常平移一腰、平移對角線、作高、連結頂點和對腰中點並延長與底邊相交轉化為三角形。

6.作圖:任意等分線段。

初三數學知識點歸納大全

第四章直線形

★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。

☆內容提要☆

一、直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從「圖形」、「表示法」、「界限」、「端點個數」、「基本性質」等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用「線段的基本性質」論證「三角形兩邊之和大於第三邊」)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明「直角三角形中斜邊大於直角邊」)

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②__線的交點―三角形的×心③性質

①高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法―反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、四邊形

分類表:

1.一般性質(角)

⑴內角和:360°

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

┗→菱形――↑

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常「平移一腰」、「平移對角線」、「作高」、「連結頂點和對腰中點並延長與底邊相交」轉化為三角形。

6.作圖:任意等分線段。

初中數學知識點總結歸納

代數部分:有理數、無理數、實數整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(一次函數、二次函數、反比例函數)

幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

1、實數的分類

有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環循小數)都是有理數。如:-3,,0.231,0.737373...

無理數:無限不環循小數叫做無理數如:π,-,0.1010010001...(兩個1之間依次多1個0)。

實數:有理數和無理數統稱為實數。

2、無理數

在理解無理數時,要抓住"無限不循環"這一時之,它包含兩層意思:一是無限小數;二是不循環.二者缺一不可.歸納起來有四類:

(1)開方開不盡的數,如等;

(2)有特定意義的數,如圓周率π,或化簡後含有π的數,如+8等;

(3)有特定結構的數,如0.1010010001...等;

(4)某些三角函數,如sin60o等。

注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標准.

3、非負數:正實數與零的統稱。(表為:x≥0)

常見的非負數有:

性質:若干個非負數的和為0,則每個非負擔數均為0。

4、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。

解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸("三要素")。

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。

作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

5、相反數

實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關於原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。

即:(1)實數的相反數是。

初三數學知識點歸納人教版相關 文章 :

★ 人教版九年級數學知識點歸納

★ 人教版初三數學知識點復習資料備戰中考

★ 初中數學知識點總結

★ 人教版必修3數學演算法初步知識點歸納

★ 人教版八年級數學上冊知識點總結

★ 人教版初一數學下冊知識點復習總結備戰中考

★ 人教版九年級歷史下冊知識點歸納

★ 人教版高三年級數學知識點總結

★ 人教版高三年級數學必考知識點

★ 人教版數學三年級下冊知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

H. 初三數學人教版知識點歸納

沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些初三數學知識點,希望對大家有所幫助。

初三新學期數學知識點

一元一次方程:

①在一個方程中,只含有一個未知數,並且未知數的指數是

1、這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:

去分母,移項,合並同類項,未知數系數化為1。

二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的 方法 :代入消元法/加減消元法。

2、不等式與不等式組

不等式:

①用符號」=「號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。

一元一次不等式組:

①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

3、函數

變數:因變數,自變數。在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。

一次函數:

①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。

②當B=0時,稱Y是X的正比例函數。

一次函數的圖象:

①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。

②正比例函數Y=KX的圖象是經過原點的一條直線。

③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

初三數學上冊知識點歸納

二元一次方程組

1、定義:含有兩個未知數,並且未知項的次數是1的整式方程叫做二元一次方程。

2、二元一次方程組的解法

(1)代入法

由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。

(2)因式分解法

在二元二次方程組中,至少有一個方程可以分解時,可採用因式分解法通過消元降次來解。

(3)配方法

將一個式子,或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和。

(4)韋達定理法

通過韋達定理的逆定理,可以利用兩數的和積關系構造一元二次方程。

(5)消常數項法

當方程組的兩個方程都缺一次項時,可用消去常數項的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。

1、直接開平方法:

用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m.

直接開平方法就是平方的逆運算.通常用根號表示其運算結果.

2、配方法

通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式。

(1)轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系數化1:將二次項系數化為1

(3)移項:將常數項移到等號右側

(4)配方:等號左右兩邊同時加上一次項系數一半的平方

(5)變形:將等號左邊的代數式寫成完全平方形式

(6)開方:左右同時開平方

(7)求解:整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項系數a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

代數式

1、代數式與有理式

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

整式和分式統稱為有理式。

2、整式和分式

含有加、減、乘、除、乘方運算的代數式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算並且除式中含有字母的有理式叫做分式。

3、單項式與多項式

沒有加減運算的整式叫做單項式。(數字與字母的積-包括單獨的一個數或字母)

幾個單項式的和,叫做多項式。

說明:

①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。

②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。

4、同類項及其合並

條件:①字母相同;②相同字母的指數相同

合並依據:乘法分配律。

初三 數學 學習方法

概念課

要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。

習題課

要掌握「聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯」的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會「小題大做」和「大題小做」的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把「大」拆「小」,以「退」為「進」,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然後再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什麼題目難得倒我們。

復習課

在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個 反思 性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的 措施 。在新學期大家准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,通過你的努力,到中考時你的數學就沒有什麼「病例」了。並且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以「練」代「復」的題海戰術。

初三數學人教版知識點歸納相關 文章 :

★ 初三數學知識點歸納人教版

★ 人教版九年級數學知識點歸納

★ 九年級人教版數學知識點整理

★ 初三物理知識點總結歸納(完整版)

★ 人教版九年級下冊數學復習提綱

★ 各年級數學學習方法大全

★ 最新初三數學知識點總結大全

★ 九年級數學知識點歸納總結

★ 人教版初三數學知識點復習資料備戰中考

★ 九年級數學重要知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();