當前位置:首頁 » 基礎知識 » 六年級第二單元知識點總結數學
擴展閱讀
歐美經典壁畫哪裡有 2025-02-21 17:58:25
調查同學喜歡去哪裡春遊 2025-02-21 17:46:55
新蒙迪歐如何實現兒童鎖 2025-02-21 17:46:45

六年級第二單元知識點總結數學

發布時間: 2025-02-19 21:44:45

① 人教版六年級上冊數學課本第二單元總結

重點:理解和掌握比的基本性質難點:比的基本性質知識歸納: 1、兩個數相除又叫做兩個數的比 2、比的前項和後項同時乘或除以相同的數[0除外],比值不變

② 人教版六年級上冊數學書第二單元的內容

第二單元分數乘法



一、教學內容

本單元教學內容包括三部分內容:分數乘法、解決問題和倒數。

二、教學目標

1.理解分數乘法的意義,掌握分數乘法的計算方法,會進行分數乘法計算。

2.理解乘法運算定律對於分數乘法同樣適用,並會應用這些運算定律進行一些簡便計算。

3.理解倒數的意義,掌握求倒數的方法。

4.會運用分數乘法解決一些簡單的實際問題,體會數學與日常生活的聯系。

三、具體編排

1.分數乘法(安排了6個例題)

分三個層次進行教學。

第一個層次學習分數乘整數,在整數乘法和分數加法的基礎上學習。

第二個層次學習分數乘分數,在理解分數乘法意義的基礎上,通過操作去理解和學習。通過這兩個層次的學習幫助學生理解並掌握分數乘法的計算方法。

第三個層次學習混合運算的內容,使學生理解整數乘法運算定律與運算順序對分數運算同樣適用,並會運用乘法運算定律進行分數的簡便計算。

例1(教學分數乘整數)

從分數乘整數引入分數乘法教學,幫助學生理解分數乘整數的意義及算理,掌握計算方法。從人的步距與袋鼠步距的比較這樣一個實際問題引入。分四個步驟安排教學內容。

(1)給出信息,提出問題。

(2)用線段圖幫助學生理解題意,使學生明確:求人跑3步的距離是袋鼠跳一下的幾分之幾,實際上是求3個2/11,為探究計算方法做好准備。

(3)探究計算方法。

先出示加法計算,是同分母分數相加,屬已學過的內容。

再出示乘法計算,根據乘法的意義,將乘式轉化為加法算式計算:分母不變,分子相加。再根據乘法的意義,將同分子連加的形式轉化為乘式,得出分數乘整數的計算方法:分母不變,分子與整數相乘的積作分子。

(4)討論歸納分數乘整數的計算方法。

例2(說明分數乘整數,為了計算簡便能約分的要先約分再計算)

在學生掌握分數乘整數的計算方法基礎上,使學生進一步了解乘得的積一般應該化成最簡分數。把積化為最簡分數有兩種處理方法,一是將乘得的積的分子與分母約分,另一種方法是在乘的過程中將分數的分母與整數進行約分。教材突出第二種方法,說明能約分的先約分再計算可以使計算簡便。

例3(教學分數乘分數)

分數乘分數的算理較難理解,所以本例通過直觀操作,幫助學生理解算理。分兩個層次教學,先解決求一個數的幾分之一的問題,再解決求一個數的幾分之幾是多少的問題。(具體說明)

解決第一個問題:1/4小時粉刷這面牆的幾分之幾?可分兩步操作。第一步把一張長方形的紙片看作一面牆,先塗出1小時粉刷的面積,即這面牆的1/5,第二步再塗出1/4小時粉刷這面牆的面積,即1/5的1/4,直觀得出1/5的1/4是1/20。在此基礎上,根據操作的過程和結果推導出計算方法。

第二個問題:3/4小時粉刷多少?讓學生用前面的方法塗色、推導與計算,自主解決問題。

在此基礎上以學生討論的形式得出分數乘分數的計算方法。

例4(說明分數乘分數應先約分再乘)

通過計算,使學生明確分數乘分數計算也應該先約分再乘,這樣計算比較簡便。

這里還提出了分數乘整數的計算方法,除了像例2那樣寫成3×6/8後進行約分,也可以把分數的分母與整數直接約分。把分數乘法的兩種形式集中呈現,加強對比與聯系。

例5:教學整數乘法運算定律推廣到分數。

通過觀察計算得出「整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用」。

例6(乘法運算定律的應用)

結合具體計算,說明乘法運算定律在分數乘法計算中的應用。

「做一做」安排運用運算定律進行分數乘法的簡便計算。

2.解決問題

教材共安排3個例題,分2個層次教學。

例1教學解答求一個數的幾分之幾是多少的問題;

例2、例3教學稍復雜的求一個數的幾分之幾是多少的問題。

例1(教學求一個數的幾分之幾是多少的問題)

以中國人均耕地面積與世界人均耕地面積這兩個量的比較引入。

用線段圖表示出問題的數量關系和要求的問題,用「想」這種形式來提示學生根據線段圖思考解決問題的思路,由於是「我國人均耕地面積」與「世界人均耕地面積」相比較,其中「世界人均耕地面積」是表示單位「1」的量,知道世界人均耕地面積為2500㎡,求我國人均耕地面積就是求2500的2/5是多少。最後列式計算解決問題。

最後針對計算的結果進行國情教育。

「做一做」安排一道與例題相同類型的題目,以鞏固這類問題的解決思路與方法。

例2(稍復雜的求一個數的幾分之幾是多少的問題)

這是一個數量與它的部分量的比較關系,即知道一個部分量是總量的幾分之幾,求另一個部分量的問題。

教材選取了綠化造林可以降低噪音這一環保題材,出示一幅情景圖:公路上汽車的噪音有80分貝,在綠化隔離帶後面,噪音降低了1/8。提出問題:人現在聽到的聲音是多少分貝?

解答一般有兩種方法,一種是先求出已知是總量幾分之幾的部分量,再用總量減去這個部分量,求出另一個部分量。教材用線段圖表示出數量關系及解題的兩個步驟,並以學生敘述解決思路的方式提示出先求什麼。然後列出算式,讓學生求出結果。

另一種是先求出要求的部分量占總量的幾分之幾,再根據分數乘法的意義求出這個部分量是多少。教材僅出示線段圖,提示要找出先求什麼,沒有給出解答算式,意圖要求學生自主探索解決問題。

最後要求學生對兩種思路進行比較,目的是通過比較,加深對兩種思考方法的認識,同時培養學生比較、歸納的能力。

例3(稍復雜的求一個數的幾分之幾是多少的問題)

這是兩個數量的比較關系,即已知一個數量比另一個數量多(少)幾分之幾,求這個數量。

教材以人心臟跳動次數為素材引入例題。

其中「嬰兒每分鍾心跳的次數比青少年多4/5」是解題的關鍵。教材由小精靈提出「嬰兒每分鍾心跳的次數比青少年多4/5表示什麼意思?」讓學生理解其含義。這句話可以轉化為「嬰兒每分鍾比青少年多跳的次數是青少年每分鍾心跳次數的4/5。」理解了這句話,就應該知道把什麼看作單位「1」,就容易理解數量關系了,接著教材還是利用線段圖幫助理解數量關系。

這題也有兩種解答方法,教材只出現一種,另一種方法教材沒有出示,只是用「想一想,還有其他的方法嗎」提示讓學生結合例2的學習自己想出。

3.倒數的認識

這部分內容是在學習了分數乘法的基礎上教學的,主要為後面學習分數除法做准備。

安排了2個例題,分別教學倒數的意義和求倒數的方法。

例1(教學倒數的含義)

編排了幾組乘積為1的乘法算式,通過學生觀察、討論等活動,找出它們的共同特點,導出倒數的定義。

要讓學生理解「互為倒數」的含義,即倒數是表示兩個數之間的關系,這兩個數是相互依存的,倒數不能單獨存在。如「不能說7/3是倒數」。

可以讓學生根據對倒數意義的理解,說出幾組倒數,看學生是否真正理解和掌握。

例2(教學求倒數的方法)

教材先安排找倒數的活動,從而初步體驗找倒數的方法:調換分子、分母的位置。

在總結求倒數的方法時,要分三種情況:

一般求一個分數的倒數是交換分數的分子、分母的位置;

求整數的倒數是把整數看作分母是1的分數,再交換分子和分母的位置。

1和0的倒數的問題,讓學生思考討論得到結論。

在討論的基礎上歸納:根據倒數的意義,因為1×1=1,所以1的倒數是1;因為0與任何數相乘都是0,所以0沒有倒數。

四、教學建議

1.注意相關的已有知識的復習。

本單元各部分知識都與前面的知識有密切的聯系。

2.加強分數乘法的意義的教學。

對分數乘法的意義理解不僅是理解分數乘分數算理的關鍵,而且是求一個數的幾分之幾是多少的基礎。因此一定要重視分數乘法意義的教學。

3.藉助多種方式幫助學生學會分析數量關系的方法。

本單元的解決問題是由乘法意義的擴展產生的,數量關系比較特殊,藉助多種方式幫助學生學會分析數量關系的方法。

③ 六年級上冊數學第二單元知識點

數學是研究數量結構、變化、以及空間模型等概念的科學.它是物理、化學等學科的基礎,而且與我們的生活息息相關.下面我給大家分享一些六年級上冊數學第二單元知識,希望能夠幫助大家,歡迎閱讀!

六年級上冊數學第二單元知識

一、確定物體位置的條件

在平面上確定物體的位置,首先要確定觀測點,然後要找准方向和角度(方位角),最後要確定距離。

二、在平面圖上標出物體位置的 方法 :

1、觀測點和方位角;

2、從觀測點沿著所確定的方向畫一條射線;

3、根據單位長度的線段所表示的地 面相 對距離把實際距離換算為圖上長度;

4、用直尺畫出圖上長度,並標出被觀測點的位置及名稱。

確定物體位置的條件:方向和距離,兩個條件缺一不可。

三、位置關系的相對性。

描述兩個物體或地點位置關系的時候會有兩種方式,如「上海在北京的南偏東約30°的方向上」「北京在上海的北偏西約30°的方向上」。角度不變,方向正好相反。南偏東對應北偏西(不能說成西偏北)

因為東西、南北正好相對,所以東偏南的相對位置是西偏北。

四、描述路線圖的方法

先按行走路線確定觀測點,再確定行走的方向和路程.即每走一步,都要說清從哪裡出發,向什麼方向走多遠的距離。每走一步,都換一個新的觀測點。

五、繪制路線圖的方法

1、確定方向標和單位長度

2、確定起點的位置

3、根據描述,從起點出發,找好方向和距離,一段一段地畫。除第一段(以起點為觀測點)外,其餘每段都要以前一段的終點為觀測點。

4、以誰為觀測點,就以誰為中心畫出"十"字方向標,然後判斷下一點的方向和距離。

每畫一段路都要重新確定觀測點、方向和距離。

北師大 六年級數學 第二單元知識點

分數混合運算

1、分數混合運算的運算順序與整數混合運算的運算順序完全相同,都是先算乘除,再算加減,有括弧的先算括弧里的。

①如果是同一級運算,按照從左到右的順序依次計算。

②如果是分數連乘,可先進行約分,再進行計算。

③如果是分數乘除混合運算時,要先把除法轉換成乘法,然後按乘法運算。

2、解決問題

(1)用分數運算解決「求比已知量多(或少)幾分之幾的量是多少」的實際問題,方法是:

第①種方法:可以先求出多或少的具體量,再用單位「1」的量加或減去多或少的部分,求出要求的問題。

第②種方法:也可以用單位「1」加或減去多或少的幾分之幾,求出未知數占單位「1」的幾分之幾,再用單位「1」的量乘這個分數。

(2)「已知甲與乙的和,其中甲占和的幾分之幾,求乙數是多少?」

第①種方法:首先明確誰占單位「1」的幾分之幾,求出甲數,再用單位「1」減去甲數,求出乙數。

第②種方法:先用單位「1」減去已知甲數所佔和的幾分之幾,即得未知乙數所佔和的幾分之幾,再求出乙數。

(3)用方程解決稍復雜的分數應用題的步驟:

①要找准單位「1」。

②確定好其他量和單位「1」的量有什麼關系,畫出關系圖,寫出等量關系式。

③設未知量為X,根據等量關系式,列出方程。

④解答方程。

(4)要記住以下幾種算術解法解應用題:

①對應數量÷對應分率=單位「1」 的量

②求一個數的幾分之幾是多少,用乘法計算。

③已知一個數的幾分之幾是多少,求這個數,用除法計算,還可以用列方程解答。

3、要記住以下的解方程定律:

加數+加數=和

加數=和-另一個加數

被減數-減數=差

被減數=差+減數

減數=被減數-差

因數×因數=積

因數=積÷另一個因數

被除數÷除數=商

被除數=商×除數

除數=被除數÷商

4、繪制簡單線段圖的方法

分數應用題,分兩種類型,一種是知道單位「1」的量用乘法,另一種是求單位「1」的量,用除法。這兩種類型應用題的數量關系可以分成三種:(一)一種量是另一種量的幾分之幾。(二)一種量比另一種量多幾分之幾。(三)一種量比另一種量少幾分之幾。繪制時關鍵處理好量與量之間的關系,在審題確定單位「1」的量。

繪制步驟:

①首先用線段表示出這個單位「1」的量,畫在最上面,用直尺畫。

②分率的分母是幾就把單位「1」的量平均分成幾份,用直尺畫出平均的等分。標出相關的量。

③再繪制與單位「1」有關的量,根據實際是上面的三種關系中的哪一種再畫。標出相關的量。

④問題所求要標出「?」號和單位。

5、補充知識點

分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

分數乘法的計演算法則

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

分數乘法意義

分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

分數乘整數:數形結合、轉化化歸

倒數:乘積是1的兩個數叫做互為倒數。

分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

整數的倒數

找一個整數的倒數,例如12,把12化成分數,即12/1 ,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12 ,12是1/12的倒數。

小數的倒數

普通演算法:找一個小數的倒數,例如0.25 ,把0.25化成分數,即1/4 ,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1 用1計演算法:也可以用1去除以這個數,例如0.25 ,1/0.25等於4 ,所以0.25的倒數4 ,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。

分數除法:分數除法是分數乘法的逆運算。

分數除法計演算法則:

甲數除以乙數(0除外),等於甲數乘乙數的倒數。

分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。

分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。

數學的六大方法技巧

1、做好預習:

單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。

2、認真聽課:

聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。

3、認真解題:

課堂練習是最及時最直接的反饋,一定不能錯過。不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶。

4、及時糾錯:

課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。

5、學會 總結 :

「數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到瞭然於心,融會貫通。

6、學會管理:

管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。,這可是大考復習時最有用的資料,千萬不可疏忽。


六年級上冊數學第二單元知識點相關 文章 :

★ 六年級上冊數學知識

★ 六年級上冊數學知識點整理歸納

★ 六年級數學上冊知識點復習

★ 六年級數學上冊知識點總結

★ 六年級數學上冊《百分數》知識點總結

★ 六年級數學上冊知識人教版

★ 六年級數學期末復習知識點匯總

★ 六年級數學上冊知識點復習資料

★ 六年級數學復習要點

★ 小學六年級數學學習方法和技巧大全

④ 六年級下冊數學第二單元知識點總結(圓柱和圓錐)

一、圓柱
圓柱的定義
1、以矩形的一邊繞著另一條邊旋轉360°,所得到的空間幾何體叫做圓柱,即AG矩形的一條邊為軸,旋轉360°所得的幾何體就是圓柱。其中AG叫做圓柱的軸,AG的長度叫做圓柱的高,所有平行於AG的線段叫做圓柱的母線,DA和D'G旋轉形成的兩個圓叫做圓柱的底面,DD'旋轉形成的曲面叫做圓柱的側面。
2、在同一個平面內有一條定直線和一條動線,當這個平面繞著這條定直線旋轉一周時,這條動線所成的面叫做旋轉面,這條定直線叫做旋轉面的軸,這條動線叫做旋轉面的母線。如果母線是和軸平行的一條直線,那麼所生成的旋轉面叫做圓柱面。如果用垂直於軸的兩個平面去截圓柱面,那麼兩個截面和圓柱面所圍成的幾何體叫做直圓柱,簡稱圓柱。
圓柱的表面積
圓柱體表面的面積,叫做這個圓柱的表面積.
圓柱的表面積=2×底面積+側面積
圓柱的側面展開以後是一個正方形(長方形),側面展開以後的長是底面周長,寬是高,所以側面積=底面周長×高
設一個圓柱底面半徑為r,高為h,則表面積S:
S=2*S底+S側
=2*πr2+CH
圓柱的體積
圓柱所佔空間的大小,叫做這個圓柱體的體積.
圓柱的體積跟長方體、正方體一樣,都是底面積×高:設一個圓柱底面半徑為r,高為h,則體積V:V=πr2h
如S為底面積,高為h,體積為V:v=sh
圓柱的側面積
圓柱的側面積=底面周長乘高 S側=Ch
註:c為πd
圓柱各部分的名稱
圓柱的的兩個圓面叫做底面(又分上底和下底);周圍的面叫做側面;兩個底面之間的距離叫做高(高有無數條)。

二、圓錐
圓錐的體積
一個圓錐所佔空間的大小,叫做這個圓錐的體積.
一個圓錐的體積等於與它等底等高的圓柱的體積的1/3
根據圓柱體積公式V=Sh(V=rrπh),得出圓錐體積公式:
V=1/3Sh(V=1/3SH)
S是底面積,h是高,r是底面半徑。
證明:
把圓錐沿高分成k分
每份高 h/k,
第 n份半徑:n*r/k
第 n份底面積:pi*n^2*r^2/k^2
第 n份體積:pi*h*n^2*r^2/k^3
總體積(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
因為
1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
總體積(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因為當n越來越大,總體積越接近於圓錐體積,1/k越接近於0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因為V柱=pi*h*r^2
所以
V錐是與它等底等高的V柱體積的1/3
圓錐的表面積
一個圓錐表面的面積叫做這個圓錐的表面積.
圓錐的計算公式
圓錐的側面積=高的平方*π*百分之扇形的度數
圓錐的側面積=1/2*母線長*底面周長
圓錐的表面積=底面積+側面積 S=πr的平方+πra (注a=母線)
圓錐的體積=1/3SH 或 1/3πr的平方h
如果圓錐和他的扇形聯系在一起那麼n=a/r*360
圓錐的其它概念
圓錐的高:
圓錐的頂點到圓錐的底面圓心之間的距離叫做圓錐的高;
圓錐的側面積:
將圓錐的側面沿母線展開,是一個扇形;沒展開時是一個曲面。
圓錐的母線:
圓錐的側面展開形成的扇形的半徑、底面圓上到頂點的距離。
圓錐有一個底面、一個側面、一個頂點、一條高、無數條母線,且側面展開圖是扇形。
圓柱與圓錐的關系
與圓柱等底等高的圓錐體積是圓柱體積的三分之一。
體積和高相等的圓錐與圓柱之間,圓錐的底面積是圓柱的三倍。
體積和底面積相等的圓錐與圓柱之間,圓錐的高是圓柱的三倍。
不相等的圓柱圓錐不相等。

⑤ 六年級下冊數學第二單元知識正比例和反比例

在六年級下冊數學第二單元的學習中,我們探討了正比例和反比例的概念。成正比例的現象意味著兩個量之間存在固定的比例關系。例如,當地圖上的距離與實際距離之比保持不變時,比例尺就是它們之間的比例關系,這表明成正比例。
另一個例子是,當一個長方形的面積與它的寬度成正比,且長度固定時,寬度與面積之間的比例關系保持不變,這同樣體現了正比例的概念。
此外,當兩個數相除的結果保持不變時,這兩個數之間也存在正比例關系。例如,被除數與除數的比值是一個常數,這說明它們之間成正比例。
同樣地,當工作總量與工作時間的比值保持不變時,工作效率也保持不變,這表示工作總量與工作時間之間成正比例。
然而,並非所有情況下都存在正比例關系。例如,一個數列中,如果一個加數與另一個加數的比值不等於它們的和,那麼這兩個數之間就不成正比例。
另一個例子是,如果看過的頁數與未看的頁數的比值不等於書的總頁數,那麼這兩個數之間也不成正比例。
而在一些情況下,兩個量之間的乘積是一個常數,這表明它們之間成反比例關系。例如,每排人數與排數的乘積等於全校總人數,當全校總人數保持不變時,每排人數與排數之間成反比例。
同樣地,如果男生人數與女生人數的比值不等於全校總人數,那麼這兩個數之間也不成正比例。
另外,當一個數列中,周長與邊長的比值是一個固定的數,且邊數固定時,周長與邊長之間成正比例。
但是,有時兩個量之間的關系並不成比例。例如,當面積與邊長的比值等於邊長時,面積與邊長之間不成正比例,因為邊長/邊長並不等於面積。

⑥ 六年級上冊數學1~8每單元總結

小學六年級數學上冊知識點歸納

第一單元:位置

1、用數對確定點的位置,第一個數表示列,第二個數表示行。如(3,5)表示(第三列,第五行)

2、圖形左、右平移:列變,行不變;圖形上、下平移:行變,列不變

第二單元:分數乘法

1、分數乘法的意義:分數乘分數是求一個數的幾分之幾是多少。例如:65×41表示求65的四分之一是多少

2、分數乘整數與整數乘法的意義相同,都是求幾個相同加數的和的簡便運算。例如:65×5表示求5個65的和是多少

3、分數乘法的計演算法則:分數與整數相乘:分子與整數相乘的積做分子,分母不變;分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。為了計算簡便,能約分的要先約分,再計算。當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算

4、分數的基本性質:分子分母同時乘或者除以一個相同的數時(0除外),分數值不變

5、乘法中比較大小時規律:一個數(0除外)乘大於1的數,積大於這個數;一個數(0除外)乘小於1的數(0除外),積小於這個數;一個數(0除外)乘1,積等於這個數

6、分數混合運算的運算順序和整數的運算順序相同

7、整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用

8、分數乘法的解決問題:已知單位「1」的量,求單位「1」的幾分之幾是多少(具體量)用乘法

9、倒數:乘積是1的兩個數互為倒數;1的倒數是1;0沒有倒數

10、求倒數的方法:分數的倒數:交換分子分母的位置;整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置;帶分數的倒數:把帶分數化為假分數,再求倒數;小數的倒數:把小數化為分數,再求倒數

第三單元:分數除法

1、分數除法的意義:分數除法是分數乘法的逆運算,就是已知兩個數的積與其中一個因數,求另一個因數的運算

2、分數除法的計演算法則:除以一個不為0的數,等於乘這個數的倒數

3、分數除法比較大小時規律:當除數大於1,商小於被除數;當除數小於1(不等於0),商大於被除數;當除數等於1,商等於被除數

第四單元:比和比的應用

1、兩個數相除又叫做兩個數的比。在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項

2、比可以表示兩個相同量的關系,即倍數關系;也可以表示兩個不同量的比,得到一個新量

3、區分比和比值

5、比和除法、分數的聯系與區別:除法是一種運算,分數是一個數,比表示兩個數的關系

6、比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變

7、化簡比:用求比值的方法,最後結果要寫成比的形式

8、按比例分配:把一個數量按照一定的比來進行分配

第五單元:百分數

1、百分數的意義和寫法:表示一個數是另一個數的百分之幾

2、百分數和分數的主要聯系與區別:聯系:都可以表示兩個量的倍比關系;區別:意義不同、分子形式不同

3、百分數和分數、小數的互化

4、用百分數解決問題:常見的百分率的計算方法

5、常見的百分率包括:出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%