當前位置:首頁 » 基礎知識 » 六年級數學全部知識點整理上冊
擴展閱讀
歐美經典壁畫哪裡有 2025-02-21 17:58:25
調查同學喜歡去哪裡春遊 2025-02-21 17:46:55
新蒙迪歐如何實現兒童鎖 2025-02-21 17:46:45

六年級數學全部知識點整理上冊

發布時間: 2025-02-19 20:23:54

『壹』 六年級上冊數學知識重點有哪些

分數乘法

1、分數乘法的意義:

(1)分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。

(2)分數乘分數是求一個數的幾分之幾是多少。

2、分數乘法的計演算法則:

(1)分數與整數相乘:分子與整數相乘的積做分子,分母不變。

(2)分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。

3、整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。

乘法交換律: a×b=b×d

乘法結合律: a×b×c=a×(b×c)

乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac

分數除法

1、分數除法的意義:

分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。

2、分數除法的計演算法則:除以一個不為0的數,等於乘這個數的倒數。

3、規律(分數除法比較大小時):

(1)當除數大於1,商小於被除數;

(2)當除數小於1(不等於0),商大於被除數;

(3)當除數等於1,商等於被除數。

4、分數混合運算順序:

(1)同級運算要按從左往右順序計算。

(2)先算乘、除後算加、減,有括弧的,要先算括弧裡面的

(3)一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的, 再算中括弧裡面的。

(4)能用運算律的要用運算律。

比和比例的意義

比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括弧的含義而另一種形式,分數有括弧的含義!

百分數與分數的區別

1、意義不同。百分數是「表示一個數是另一個數的百分之幾的數。」它只能表示兩數之間的倍數關系,不能表示某一具體數量。因此,百分數後面不能帶單位名稱。分數是「把單位『1』平均分成若干份,表示這樣一份或幾份的數」。分數還可以表示兩數之間的倍數關系。

2、應用范圍不同。百分數在生產、工作和生活中,常用於調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。

3、書寫形式不同。百分數通常不寫成分數形式,而採用百分號「%」來表示。因此,不論百分數的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。

而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。任何一個百分數都可以寫成分母是100的分數,而分母是100的分數並不都具有百分數的意義。

4、百分數不能帶單位名稱;當分數表示具體數時可帶單位名稱。

以上是小編整理的六年級上冊數學知識點,希望能幫到你。

『貳』 六年級數學有哪些知識點

上冊:
1、第一單元《位置》
2、第二單元《分數乘法》
分數乘法
解決問題
倒數的認識
整理和復習

3、第三單元《分數除法》
分數除法
解決問題
比和比的應用
整理和復習
4、第四單元《圓》
圓的認識
圓的周長
圓的面積
整理和復習
確定起跑線
5、第五單元《百分數》
百分數的意義和寫法
百分數和分數、小數的互化
用百分數解決問題
整理和復習
6、第六單元《統計》
扇形統計圖
合理存款
7、第七單元《數學廣角》
雞兔同籠
8、第八單元《總復習》
下冊:
一、負數
二、圓柱與圓錐
1.圓柱 圓柱的認識 圓柱的表面積 圓柱的體積
2.圓錐 第二單元整理和復習
三、比例
1.比例的意義和基本性質
2.正比例和反比例的意義
3.比例的應用
比例尺
圖形的放大與縮小
用比例解決問題
第三單元整理和復習
綜合應用:自行車里的數學
四、統計
五、數學廣角
綜合應用:節約用水
六、整理和復習
1.數與代數
數的認識
數的運算
式與方程
常見的量
比和比例
數學思考
2.空間與圖形
圖形的認識與測量

『叄』 小學六年級上冊數學知識點歸納

第一部分 數與代數

一、分數乘法

(一)分數乘法的計演算法則:

1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)

2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。

3、為了計算簡便,能約分的要先約分,再計算。

注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。

(二)規律:(乘法中比較大小時)

一個數(0除外)乘大於1的數,積大於這個數。

一個數(0除外)乘小於1的數(0除外),積小於這個數。

一個數(0除外)乘1,積等於這個數。

(三)分數混合運算的運算順序和整數的運算順序相同。

(四)整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。

乘法交換律:a×b=b×a

乘法結合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c

二、分數乘法的解決問題(詳細見重難點分解)

(已知單位「1」的量(用乘法),求單位「1」的幾分之幾是多少)

1、找單位「1」: 在分率句中分率的前面; 或 「占」、「是」、「比」的後面

2、求一個數的幾倍: 一個數×幾倍; 求一個數的幾分之幾是多少: 一個數× 。

3、寫數量關系式技巧:

(1)「的」相當於 「×」(乘號)

「占」、「是」、「比」「相當於」相當於「=」(等號)

(2)分率前是「的」:

單位「1」的量×分率=分率對應量

(3)分率前是「多或少」的意思:

單位「1」的量×(1±分率)=分率的對應量

二、分數除法

(一)倒數

1、倒數的意義: 乘積是1的兩個數互為倒數。

強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。(要說清誰是誰的倒數)。

2、求倒數的方法:(原數與倒數之間不要寫等號哦)

(1)求分數的倒數:交換分子分母的位置。

(2)求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。

(3)求帶分數的倒數:把帶分數化為假分數,再求倒數。

(4)求小數的倒數: 把小數化為分數,再求倒數。

3、因為1×1=1,1的倒數是1;

因為找不到與0相乘得1的數0沒有倒數。

4、對於任意數a(a≠0),它的倒數為1/a;非零整數a的倒數為1/a;分數b/a的倒數是a/b;

5、真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。

(二)分數除法

1、分數除法的意義:

分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。

2、分數除法的計演算法則: 除以一個不為0的數,等於乘這個數的倒數。

3、規律(分數除法比較大小時):

(1)當除數大於1,商小於被除數;

(2)當除數小於1(不等於0),商大於被除數;

(3)、當除數等於1,商等於被除數。

4、「[ ] 」叫做中括弧。一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的,再算中括弧裡面的。

(三)分數除法解決問題(詳細見重難點分解)

(未知單位「1」的量(用除法): 已知單位「1」的幾分之幾是多少,求單位「1」的量。 )

1、數量關系式和分數乘法解決問題中的關系式相同:

(1)分率前是「的」:

單位「1」的量×分率=分率對應量

(2)分率前是「多或少」的意思:

單位「1」的量×(1 分率)=分率對應量

2、解法:(建議:用方程解答)

(1)方程:根據數量關系式設未知量為x,用方程解答。

(2)算術(用除法):分率對應量÷對應分率 = 單位「1」的量

3、求一個數是另一個數的幾分之幾:就用一個數÷另一個數

4、求一個數比另一個數多(少)幾分之幾:

① 求多幾分之幾:大數÷小數 – 1

② 求少幾分之幾: 1 - 小數÷大數

或①求多幾分之幾(大數-小數)÷小數

② 求少幾分之幾:(大數-小數)÷大數

(四)比和比的應用

1、比的意義:兩個數相除又叫做兩個數的比。

2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值(比值通常用分數表示,也可以用小數或整數表示)。

例如

15 : 10 = 15÷10=1.5

∶ ∶ ∶ ∶

前項 比號 後項 比值

3、比可以表示兩個相同量的關系,即倍數關系。也可以表示兩個不同量的比,得到一個新量。

例: 路程÷速度=時間。

4、區分比和比值

比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。

比值:相當於商,是一個數,可以是整數,分數,也可以是小數。

5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。

6、比和除法、分數的聯系:

7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。

8、根據比與除法、分數的關系,可以理解比的後項不能為0。

體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。

(五)比的基本性質

1、根據比、除法、分數的關系:

商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。

分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。

比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。

2、最簡整數比:比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。

3、根據比的基本性質,可以把比化成最簡單的整數比。

4.化簡比:

(1)用比的基本性質化簡

①用比的前項和後項同時除以它們的公因數。

②兩個分數的比:用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。

③兩個小數的比:向右移動小數點的位置,先化成整數比再化簡。

(2)用求比值的方法。注意: 最後結果要寫成比的形式。

5.按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。

如: 已知兩個量之比為 ,則設這兩個量分別為 。

6、路程一定,速度比和時間比成反比。(如:路程相同,速度比是4:5,時間比則為5:4)

工作總量一定,工作效率和工作時間成反比。

(如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)

三、百分數

(一)百分數的意義和寫法

1、百分數的意義:表示一個數是另一個數的百分之幾。

百分數是指的兩個數的比,因此也叫百分率或百分比。

2、百分數和分數的主要聯系與區別:

(1)聯系:都可以表示兩個量的倍比關系。

(2)區別:

①意義不同:百分數只表示兩個數的倍比關系,不能表示具體的數量,所以不能帶單位;

分數既可以表示具體的數,又可以表示兩個數的關系,表示具本數時可以帶單位。

②、百分數的分子可以是整數,也可以是小數;

分數的分子不能是小數,只能是除0以外的自然數。

3、百分數的寫法:通常不寫成分數形式,而在原來分子後面加上「%」來表示。

(二)百分數與小數的互化:

1、小數化成百分數:把小數點向右移動兩位,同時在後面添上百分號。

2. 百分數化成小數:把小數點向左移動兩位,同時去掉百分號。

(三)百分數的和分數的互化

1、百分數化成分數:

先把百分數化成分數,先把百分數改寫成分母是否100的分數,能約分要約成最簡分數。

2、分數化成百分數:

① 用分數的基本性質,把分數分母擴大或縮小成分母是100的分數,再寫成百分數形式。

②先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。

(四)常見的分數與小數、百分數之間的互化

第二部分 圖形與幾何



一、認識圓

1、圓的定義:圓是由曲線圍成的一種平面圖形。

2、圓心:將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。

一般用字母O表示。它到圓上任意一點的距離都相等。

3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。

把圓規兩腳分開,兩腳之間的距離就是圓的半徑。

4、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。一般用字母d表示。

直徑是一個圓內最長的線段。

5、圓心確定圓的位置,半徑確定圓的大小。

6、在同圓或等圓內,有無數條半徑,有無數條直徑。所有的半徑都相等,所有的直徑都相等。

7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的 。

用字母表示為:d=2r或r=d/2

8、軸對稱圖形:

如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。

摺痕所在的這條直線叫做對稱軸。(經過圓心的任意一條直線或直徑所在的直線)

9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。

10、只有1一條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。

只有2條對稱軸的圖形是:長方形

只有3條對稱軸的圖形是:等邊三角形

只有4條對稱軸的圖形是:正方形

有無數條對稱軸的圖形是:圓、圓環。

二、圓的周長

1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。

2、圓周率實驗:

在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。發現一般規律,就是圓周長與它直徑的比值是一個固定數(π)。

3.圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。用字母π(pai) 表示。

(1)一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。圓周率π是一個無限不循環小數。在計算時,一般取π ≈ 3.14。

(2)在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。

(3)世界上第一個把圓周率算出來的人是我國的數學家祖沖之。

4、圓的周長公式

5、在一個正方形里畫一個的圓,圓的直徑等於正方形的邊長。

在一個長方形里畫一個的圓,圓的直徑等於長方形的寬。

6、區分周長的一半和半圓的周長:

(1)周長的一半:等於圓的周長÷2

計算方法:2πr÷2 即 πr

(2)半圓的周長:等於圓的周長的一半加直徑。

計算方法:πr+2r

三、圓的面積

1、圓的面積:圓所佔平面的大小叫做圓的面積。 用字母S表示。

2、一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。

3、圓面積公式的推導:

(1)、用逐漸逼近的轉化思想: 體現化圓為方,化曲為直;化新為舊,化未知為已知,化復雜為簡單,化抽象為具體。

(2)、把一個圓等分(偶數份)成的扇形份數越多,拼成的圖像越接近長方形。

(3)、拼出的圖形與圓的周長和半徑的關系。

4、環形的面積:

一個環形,外圓的半徑是R,內圓的半徑是r。(R=r+環的寬度.)

S環 = πR²-πr²或

環形的面積公式: S環=π(R²-r²)。

5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。

而面積擴大或縮小的倍數是這倍數的平方倍。

例如:

在同一個圓里,半徑擴大3倍,那麼直徑和周長就都擴大3倍,而面積擴大9倍。

6、兩個圓:半徑比 = 直徑比 = 周長比;而面積比等於這比的平方。

例如:

兩個圓的半徑比是2∶3,那麼這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9

7、任意一個正方形與它內切圓的面積之比都是一個固定值,即:4∶π

8、當長方形,正方形,圓的周長相等時,圓面積,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。

9、確定起跑線:

(1)、每條跑道的長度 = 兩個半圓形跑道合成的圓的周長 + 兩個直道的長度。

(2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)

(3)、每相鄰兩個跑道相隔的距離是: 2×π×跑道的寬度

(4)、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。

11、常用各π值結果:

2π = 6.28 3π = 9.42

4π = 12.56 5π = 15.7

6π = 18.84 7π = 21.98

8π = 25.12 9π = 28.26

10π = 31.4 16π = 50.24

25π = 78.5 36π = 113.04

64π = 200.96 96π = 301.44

扇形統計圖

一、扇形統計圖的意義:

用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間的關系。

也就是各部分數量占總數的百分比(因此也叫百分比圖)。

二、常用統計圖的優點:

1、條形統計圖:可以清楚的看出各種數量的多少。

2、折線統計圖:不僅可以看出各種數量的多少,還可以清晰看出數量的增減變化情況。

3、扇形統計圖:能夠清楚的反映出各部分數量同總數之間的關系。

三、扇形的面積大小:在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關,圓心角越大,扇形越大。(因此扇形面積占圓面積的百分比,同時也是該扇形圓心角度數占圓周角度數的百分比。)

『肆』 六年級數學必考上冊知識點有哪些

六年級數學必考上冊知識點如下:

1、分數乘法:分數的分子與分子相乘,分母與分母相乘,可約分的先約分。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變,分數乘分數,用分子相乘的積作分子,分母相乘的積作分母,但分子分母不能為零。

3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,求幾個相同加數的和的簡便運算。

4、分數乘整數:數形結合、轉化化歸。

5、比的基本性質:比的前項和後項都乘以或除以一個不為零的數。

許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。

此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。

因此,我們可以學習群、環、域和其他的抽象系統。把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域。

『伍』 六年級上冊數學1~8每單元總結

小學六年級數學上冊知識點歸納

第一單元:位置

1、用數對確定點的位置,第一個數表示列,第二個數表示行。如(3,5)表示(第三列,第五行)

2、圖形左、右平移:列變,行不變;圖形上、下平移:行變,列不變

第二單元:分數乘法

1、分數乘法的意義:分數乘分數是求一個數的幾分之幾是多少。例如:65×41表示求65的四分之一是多少

2、分數乘整數與整數乘法的意義相同,都是求幾個相同加數的和的簡便運算。例如:65×5表示求5個65的和是多少

3、分數乘法的計演算法則:分數與整數相乘:分子與整數相乘的積做分子,分母不變;分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。為了計算簡便,能約分的要先約分,再計算。當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算

4、分數的基本性質:分子分母同時乘或者除以一個相同的數時(0除外),分數值不變

5、乘法中比較大小時規律:一個數(0除外)乘大於1的數,積大於這個數;一個數(0除外)乘小於1的數(0除外),積小於這個數;一個數(0除外)乘1,積等於這個數

6、分數混合運算的運算順序和整數的運算順序相同

7、整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用

8、分數乘法的解決問題:已知單位「1」的量,求單位「1」的幾分之幾是多少(具體量)用乘法

9、倒數:乘積是1的兩個數互為倒數;1的倒數是1;0沒有倒數

10、求倒數的方法:分數的倒數:交換分子分母的位置;整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置;帶分數的倒數:把帶分數化為假分數,再求倒數;小數的倒數:把小數化為分數,再求倒數

第三單元:分數除法

1、分數除法的意義:分數除法是分數乘法的逆運算,就是已知兩個數的積與其中一個因數,求另一個因數的運算

2、分數除法的計演算法則:除以一個不為0的數,等於乘這個數的倒數

3、分數除法比較大小時規律:當除數大於1,商小於被除數;當除數小於1(不等於0),商大於被除數;當除數等於1,商等於被除數

第四單元:比和比的應用

1、兩個數相除又叫做兩個數的比。在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項

2、比可以表示兩個相同量的關系,即倍數關系;也可以表示兩個不同量的比,得到一個新量

3、區分比和比值

5、比和除法、分數的聯系與區別:除法是一種運算,分數是一個數,比表示兩個數的關系

6、比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變

7、化簡比:用求比值的方法,最後結果要寫成比的形式

8、按比例分配:把一個數量按照一定的比來進行分配

第五單元:百分數

1、百分數的意義和寫法:表示一個數是另一個數的百分之幾

2、百分數和分數的主要聯系與區別:聯系:都可以表示兩個量的倍比關系;區別:意義不同、分子形式不同

3、百分數和分數、小數的互化

4、用百分數解決問題:常見的百分率的計算方法

5、常見的百分率包括:出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%

『陸』 六年級數學上冊必考知識點有哪些

六年級數學上冊必考知識點:

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

3、分數乘法意義

分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸。

5、倒數:乘積是1的兩個數叫做互為倒數。

6、分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

7、整數的倒數

找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。

8、小數的倒數的普通演算法:找一個小數的倒數,例如0.25,把0.25化成分數,即1/4,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1。

9、用1計演算法:也可以用1去除以這個數,例如0.25,1/0.25等於4,所以0.25的倒數4,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。

10、分數除法:分數除法是分數乘法的逆運算。

11、分數除法計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

12、分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。

13、分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。

14、比和比例比和比例一直是學數學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同於算式中等號左邊的式子,是式子的一種;比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同。

所以,比和比例的聯系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項後項各2個。

15、比的基本性質:比的前項和後項都乘以或除以一個不為零的數。比值不變。比的性質用於化簡比。比表示兩個數相除;只有兩個項:比的前項和後項。比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。