A. 人教版八年級數學上冊的知識要點
回答:人教版八年級數學上冊的知識要點很多。每一章有每一章的知識點嫌笑。如,全等三角形這一章,知道全等三角形的性質與判定及應用,它是證明兩個角,線段相等的依據。還有角的平分線、線段的垂直平分線的性質與判定。會畫軸對稱圖形及它的性質。實數的范圍,與數軸的對應關系,無理數的理解。一次函數中:會寫解析式、畫圖象、掌握它的性質及與一次方程、不等式的關系。如喊整式的乘除這一章,基礎較多,如,同底數冪的乘法與除法,積的乘方,冪的乘方。特別是平方差公式和完全平方公式,它不但是乘法的重點也是因式分解的重要公式,必須掌握。芹橡含
B. 八年級上冊數學知識點總結
學習 八年級 數學知識點的來源於勤奮好學,只有好學者,才能在無邊的知識海洋里獵取到真智才學,為大家整理了八年級上冊數學知識點 總結 人教版,歡迎大家閱讀!
八年級上冊數學知識點總結人教版第11-12章
第十一章 全等三角形
知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本 方法 步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。
第十二章 軸對稱
知識概念
1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質: (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°,
7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。
八年級上冊數學知識點總結人教版第13-14章
第十三章 實數
1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
第十四章 一次函數
知識概念
1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。
3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。
4.已知兩點坐標求函數解析式:待定系數法
一次函數是初中學生學習函數的開始,也是今後學習 其它 函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。
八年級上冊數學知識點總結人教版第15章
第十五章 整式的乘除與分解因式
1.同底數冪的乘法法則: (m,n都是正數)
2.. 冪的乘方法則:(m,n都是正數)
3. 整式的乘法
(1) 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即,如,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的.
④運算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
八年級上冊數學知識點總結相關 文章 :
1. 人教版八年級數學上冊知識點總結
2. 初二數學上冊知識點總結
3. 人教版八年級數學上冊知識點總結
4. 八年級數學上冊知識點歸納
5. 八年級上冊數學知識點總結
6. 新人教版八年級數學上冊知識點歸納
7. 八年級上冊數學知識點總結與八年級數學學習技巧
8. 八年級數學知識點整理歸納
9. 八年級數學知識點總結
10. 2017人教版八年級上冊數學知識點總結
C. 人教版八年級上冊數學提綱
數學是中考的一項重要內容,學好數學能夠幫助我們提高總成績,你會寫復習提綱嗎?下面我給大家分享一些人教版 八年級 上冊數學提綱,希望能夠幫助大家,歡迎閱讀!
人教版八年級上冊數學提綱
一、多邊形
1、多邊形:由一些線段首尾順次連結組成的圖形,叫做多邊形。
2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。
3、多邊形的頂點:多邊形每相鄰兩邊的公共端點叫做多邊形的頂點。
4、多邊形的對角線:連結多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線。
5、多邊形的周長:多邊形各邊的長度和叫做多邊形的周長。
6、凸多邊形:把多邊形的任何一條邊向兩方延長,如果多邊形的其他各邊都在延長線所得直線的問旁,這樣的多邊形叫凸多邊形。
說明:一個多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今後所說的多邊形,如果不特別聲明,都是指凸多邊形。
7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內角,簡稱多邊形的角。
8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長線所組成的角叫做多邊形的外角。
注意:多邊形的外角也就是與它有公共頂點的內角的鄰補角。
9、多邊形內角和定理:n邊形內角和等於(n-2)180°。
10、多邊形內角和定理的推論:n邊形的外角和等於360°。
說明:多邊形的外角和是一個常數(與邊數無關),利用它解決有關計算題比利用多邊形內角和公式及對角線求法公式簡單。無論用哪個公式解決有關計算,都要與解方程聯系起來,掌握計算 方法 。
二、四邊形
在同一平面內,由不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。
三、凸四邊形
把四邊形的任一邊向兩方延長,如果其他個邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形。
四、對角線
在四邊形中,連接不相鄰兩個頂點的線段叫做四邊形的對角線。
五、四邊形的不穩定性
三角形的三邊如果確定後,它的形狀、大小就確定了,這是三角形的穩定性。但是四邊形的四邊確定後,它的形狀不能確定,這就是四邊形所具有的不穩定性,它在生產、生活方面有著廣泛的應用。
四邊形的內角和定理及外角和定理
四邊形的內角和定理:四邊形的內角和等於360°。
四邊形的外角和定理:四邊形的外角和等於360°。
推論:多邊形的內角和定理:n邊形的內角和等於180°。
多邊形的外角和定理:任意多邊形的外角和等於360°。
提升數學成績的方法有哪些
考試的方法
1、良好心態考生要自信,要有客觀的考試目標。追求正常發揮,而不要期望自己超長表現,這樣心態會放的很平和。沉著冷靜的同時也要適度緊張,要使大腦處於最佳活躍狀態。
2、考試從審題開始審題要避免「猜」、「漏」兩種不良習慣,為此審題要從字到詞再到句。
3、學會使用演算紙要把演算紙看成是試卷的一部分,要工整有序,為了方便檢查要寫上題號。
4、正確對待難題難題是用來拉開分數的,不管你水平高低,都應該學會繞開難題最後做,不要被難題搞亂思緒,只有這樣才能保證無論什麼考試,你都能排前幾名。
認真「聽」的習慣
為了教和學的同步,教師應要求學生在課堂上集中思想,專心聽老師講課,認真聽同學發言,抓住重點、難點、疑點聽,邊聽邊思考,對中、高年級學生提倡邊聽邊做聽課筆記。
積極「想」的習慣
積極思考老師和同學提出的問題,使自己始終置身於教學活動之中,這是提高學習質量和效率的重要保證。學生思考、回答問題一般要求達到:有根據、有條理、符合邏輯。隨著年齡的升高,思考問題時應逐步滲透聯想、假設、轉化等數學思想,不斷提高思考問題的質量和速度。
適當多做題,養成良好的解題習慣
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。
在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
數學證明題不會怎麼辦
1.讀題要細心
有些學生一看到某一題前面部分有似曾相識的感覺,就直接寫答案,這種還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取,我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置。
2.要記
這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。
3.要引申
難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論(就像電腦一下,你一點擊開始立刻彈出對應的菜單),然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習。
人教版八年級上冊數學提綱相關 文章 :
★ 八年級上冊數學復習提綱整理
★ 人教版八年級數學上冊知識點總結
★ 八年級上冊數學復習提綱2020
★ 初二數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 初二數學知識點歸納上冊人教版
★ 數學八年級上冊知識點整理
★ 2017人教版八年級數學上冊知識點歸納
★ 2021八年級上冊數學復習提綱
★ 人教版八年級上冊數學教材分析
D. 人教版八年級上冊數學知識點歸納
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。歸納整理了人教版八年級數學上冊知識點,歡迎閱讀,希望對你復習有幫助。
人教版八年級數學上冊知識點總結
第十一章 三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9.多邊形的外角:多邊形族裂漏的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。鑲嵌的條件:當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個時,就能拼成一個平面圖形。
13.公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
⑶多邊形內角和公式:邊形的內角和等於·180°
⑷多邊形的外角和:多邊形的外角和為360°。
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形.②邊形共有條對角線。
第十二章 全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形。
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形。
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點。
⑷對應邊:全等三角形中互相重合的邊叫做對應邊。
⑸對應角:全等三角形中互相重合的角叫做對應角。
2.基本性質:
⑴三角形的穩定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩定性。
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等。
3.全等三角形的判定定理:
⑴邊邊邊():三邊對應相等的兩個三角形全等。
⑵邊角邊():兩邊和它們的夾角對應相等的兩個三角形全等。
⑶角邊角():兩角和它們的夾邊對應相等的兩個三角形全等。
⑷角角邊():兩角和其中一個角的對邊對應相等的兩個三角形全等。
⑸斜邊、直角邊():斜邊和一條直角邊對應相等的兩個直角三角形全等。
4.角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等。
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上。
5.證明的基本方法:
⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據題意,畫出圖形,並用數字元號表示已知和求證。
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程。
第十三章 軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個源指圖形就叫做兆爛軸對稱圖形。
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱。
⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線。
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。
2.基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線。
②對稱的圖形都全等。
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等。
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
⑶關於坐標軸對稱的點的坐標性質
。
⑷等腰三角形的性質:
①等腰三角形兩腰相等。
②等腰三角形兩底角相等(等邊對等角)。
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合。
④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
⑸等邊三角形的性質:
①等邊三角形三邊都相等。
②等邊三角形三個內角都相等,都等於60°
③等邊三角形每條邊上都存在三線合一。
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條)。
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形。
②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)。
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形。
②三個角都相等的三角形是等邊三角形。
③有一個角是60°的等腰三角形是等邊三角形。
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線。
⑷作已知圖形關於某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短。
第十四章 整式的乘除與分解因式
一、知識框架:
第十五章 分式
一、知識框架 :
●●●END●●●
E. 誰知道人教八年級上冊數學知識點拜託了
第十一章 全等三角形
一.定義
1.全等形:形狀大小相同,能完全重合的兩個圖形.
2.全等三角形:能夠完全重合的兩個三角形.
二.重點
1.平移,翻折,旋轉前後的圖形全等.
2.全等三角形的性質:全等三角形的對應邊相等,全等三角形的對應角相等.
3.全等三角形的判定:
SSS三邊對應相等的兩個三角形全等[邊邊邊]
SAS兩邊和它們的夾角對應相等的兩個三角形全等[邊角邊]
ASA兩角和它們的夾邊對應相等的兩個三角形全等[角邊角]
AAS兩個角和其中一個角的對邊開業相等的兩個三角形全等[邊角邊]
HL斜邊和一條直角邊對應相等的兩個三角形全等[斜邊,直角邊]
4.角平分線的性質:角的平分線上的點到角的兩邊的距離相等.
5.角平分線的判定:角的內部到角的兩邊的距離相等的點在角的平分線上.
三.注意
1.記兩個三角形全等時,通常把表示對應頂點的字母寫在對應的位置上.
第十二章 軸對稱
一.定義
1.如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.這條直線就是它的對稱軸.我們也說這個圖形關於這條直線[成軸]對稱.
2.把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱.這條直線叫做對稱軸,折疊後重合的點是對應點,叫做對應點.
3.經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線.
如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連線段的垂直平分線.
軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線.
4.有兩邊相等的三角形叫做等腰三角形.
5.三條邊都相等的三角形叫做等邊三角形.
二.重點
1.把成軸對稱的兩個圖形看成一個整體,它就是一個軸對稱圖形.
2.把一個軸對稱圖形沿對稱軸分成兩個圖形,這兩個圖形關於這條軸對稱.
3.垂直平分線的性質:線段垂直平分線上的點與這條線段兩個端點的距離相等.
4.垂直平分線的判定:與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.
5.如何做對稱軸:如果兩個圖形成軸對稱,其對稱軸就是任何一對對應點所連線段的垂直平分線.因此,我們只要找到一對再對應點,作出連接它們的線段的垂直平分線就可以得到這個圖形的對稱軸.
同樣,對於軸對稱圖形,只要找到任意一組對應點所連線段的垂直平分線,就得到此圖形的對稱軸.
6.軸對稱圖形的性質:對稱軸方向和位置發生變化時,得到的圖形的方向和位置也會發生變化.
由個平面圖形可以得到它關於一條直線成軸對稱的圖形,這個圖形與原圖形的形狀,大小完全相等.
新圖形上的每一點,都是原圖形上的某一點關於直線的對稱點.
連接任意一對對應點的線段被對稱軸垂直平分.
7.等腰三角形的性質:等腰三角形的兩個底角相等[等邊對等角]
等腰三角形的頂角平分線,底邊上的中線,底邊上的高相互重合[三線合一]
[等腰三角形是軸對稱圖形,底邊上的中線(,底邊上的高,頂角平分線)所在直線就是它的對稱軸.
等腰三角形兩腰上的高或中線相等.
等腰三角形兩底角平分線相等.
等腰三角形底邊上高的點到兩腰的距離之和等於底角到一腰的距離.
等腰三角形頂角平分線,底邊上的高,底邊上的中線到兩腰的距離相等.]
8.等腰三角形的判定方法:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等[等角對等邊].
[如果三角形一個外角的平分線平行於三角形的一邊,那麼這個三角形是等腰三角形.]
9.等邊三角形的性質: 等邊三角形的三個內角都相等,並且每一個角都等於60°.
10.等邊三角形的判定:等邊三角形的三個內角都相等,並且每一個角都等於60°.
三個角都相等的三角形是等邊三角形.
有一個角是60°的等腰三角形是等邊三角形.
11.直角三角形的性質之一:在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半.
12.在一個三角形中,如果兩條邊不等,那麼它們所對的角也不等,大邊所對的角較大.
三.注意
1.(x,y)關於原點對稱(-x.-y)
關於x軸對稱(x,-y)
關於y軸對稱(-x,y)
2.用坐標表示軸對稱.
第十三章 實數
一.定義
1.一般地,如果一個正數x的平方等於a,即x2=a,那麼這個正數x叫做a的算術平方根.a叫做被開方數.
2.一般地,如果一個數的平方等於a,那麼這個數叫做a的平方根或二次方根,求一個數a的平方根的運算,叫做開平方.
3.一般地,如果一個數的立方等於a,那麼這個數叫做a的立方根或三次方根.求一個數的立方根的運算,叫做開立方.
4.任何一個有理數都可以寫成有限小數或無限循環小數的形式.任何有限小數或無限循環小數也都是有理數.
5.無限不循環小數又叫無理數.
6.有理數和無理數統稱實數.
7.數軸上的點與實數一一對應.平面直角坐標系中與有序實數對之間也是一一對應的.
二.重點
1.平方與開平方互為逆運算.
2.正數的平方根有兩個,它們互為相反數,其中正的平方根就是這個數的算術平方根.
3.當被開方數的小數點向右每移動兩位,它的算術平方根的小數點就向右移動一位.
4.當被平方數小數點每向右移動三位,它的立方根小數點向右移動一位.
5. 數a的相反數是-a[a為任意實數],一個正實數的絕對值是它本身,一個負實數的絕對值是它的相反數;0的絕對值是0.
三.注意
1.被開方數一定是非負數.
2. 0,1的算術平方根是它本身;0的平方根是0,負數沒有平方根;正數的立方根是正數,負數的立方根是負數,0的立方根是0.
3.帶根號的無理數的整數倍或幾分之幾仍是無理數;帶根號的數若開之後是有理數則是有理數;任何一個有理數都能寫成分數的形式.
第十四章 一次函數
一.定義
1.在按某種規律變化的過程中,數值發生變化的量為變數,始終不變的是常量.
2.一般地,在一個變化過程中,如果有兩個變數x與y,並且對於x的每一個確定的值,y都有唯一確定的值與其對應,那麼x是自變數,y是x的函數.如果當x=a時y=b,那麼b叫做當自變數的值為a時的函數值.
3.一般地,形如y=kx[k是常數,k≠0]的函數,叫做正比例函數.其中k叫做比例系數.[一個數字與一個自變數的積的形式]
4.形如y=kx+b[k,b為常數,k≠0]的函數,叫做一次函數.
二.重點
1.自變數的取值范圍:
(1)整式型 y=3x+1──全體實數
(2)分式型 ──使分母不為0
(3)根式型 ──使被開方數非負
(4)綜合型
2.作函數圖象的一般步驟:
(1)列表
(2)描點
(3)連線
3.一般地,正比例函數y=kx[k是常數,k≠0]的圖象是一條經過原點的直線,我們稱它為直線y=kx,當k>0時,直線y=kx經過第一三象限,y隨x的增大而增大;當k<0時,直線y=kx經過第二四象限,y隨x的增大而減小.
4.待定系數法的應用.
5.用函數圖象看一元一次方程的解.[2x+5=17]
解:原方程化為2x-12=0
畫出y=2x-12的圖象
…
由圖象可知,直線y=x-12與x軸的交點為(6,0)
所以x=6
6.用函數圖象看一元一次不等式[5x+6>3x+10]
解1:原不等式化為2x-4>0
畫出函數y=2x-4的圖象
…
由圖象可知,當x>2時直線y=2x-4的圖象在x軸上方
所以不等式2x-4>0的解集為x>2
所以原不等式的解集為x>2
解2:畫出函數y1=5x+6,y2=x+10的圖象
…
由圖象可知,當x>2時,直線y1的圖象在y2的上方,即y1>y2
所以不等式5x+6>3x+10的解集為x>2
7.用函數圖象看二元一次方程組
解:原方程組化為{[用含x的式子表示y的形式]
畫出函數 和 的圖象
…
由圖象可知,直線 與 的交點為(1,1)
所以方程組{…的解為{x=1,y=1
所以原方程組的解為{x=1,y=1
三.注意
1.常量和變數相對而言,不是永遠不變的.
2.反比例函數的圖像是雙曲線.
3.正比例函數是一種特殊的一次函數.
4.選擇方案.
第十五章 整式的乘除與因式分解
一.定義
1.整式乘法
(1).am·an=am+n[m,n都是正整數]
同底數冪相乘,底數不變,指數相加.
(2).(am)n=amn[m,n都是正整數]
冪的乘方,底數不變,指數相乘.
(3).(ab)n=anbn[n為正整數]
積的乘方,等於把積的每一個因式分別乘方,再把所得的冪相乘.
(4).ac5·bc2=(a·b) ·(c5·c2)=abc5+2=abc7
單項式與單項式相乘,把它們的系數,相同字母分別相乘,對於只在一個單項式里含有的字母,則連同它的指數作為積的一個因式.
(5).m(a+b+c)=ma+mb+mc
單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,
(6).(a+b)(m+n)=am+an+bm+bn
多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相乘.
2.乘法公式
(1).(a+b)(a-b)=a2-b2
平方差公式:兩個數的和與這兩個數的差的積,等於這兩個數的平方差.
(2).(a±b)2=a2±2ab+b2
完全平方公式:兩數和[或差]的平方,等於它們的平方和,加[或減]它們積的2倍.
3.整式除法
(1)am÷an=am-n[a≠0,m,n都是正整數,且m>n]
同底數冪相除,底數不變,指數相減.
(2)a0=1[a≠0]
任何不等於0的數的0次冪都等於1.
(3)單項式相除,把系數與同底數冪分別相除作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式.
(4)多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.
4.把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做把這個多項式分解因式.
二.重點
1.(x+p)(x+q)=x2+(p+q)x+pq
2.x3-y3=(x-y)(x2+xy+y2)
3.因式分解兩種基本方法:
(1)提公因式法.提取:數字是各項的最大公約數,各項都含的字母,指數是各項中最低的.
(2)公式法.
①a2-b2=(a+b)(a-b)
兩個數的平方差,等於這兩個數的和與這兩個數的差的積
②a2±2ab+b2=(a±b)2
兩個數的平方和加上[或減去]這兩個數的積的2倍,等於這兩個數的和[或差]的平方.
三.注意
1.添括弧時,如果括弧前面是正號,括到括弧里的各項都不變符號;如果括弧前面時負號,括到括弧里的各項都改變符號.