當前位置:首頁 » 基礎知識 » 數學12重要知識點
擴展閱讀
歌詞配圖怎麼弄 2025-02-05 02:31:05
健康知識講座講解 2025-02-05 02:23:29
同學看完題就放棄怎麼辦 2025-02-05 02:09:18

數學12重要知識點

發布時間: 2025-02-04 23:57:22

⑴ 小學數學重要知識點匯總

小學數學重點知識點有哪些?哪些是一定要掌握點?下面是我為大家整理的關於小學數學重要知識點匯總,希望對您有所幫助。歡迎大家閱讀參考學習!

目錄

小學生數學法則知識歸類

小學數學口決定義歸類

小學數學量的計算單位及進率歸類

常用計算公式表

小學生數學法則知識歸類

(1)筆算兩位數加法,要記三條

1、相同數位對齊;

2、從個位加起;

3、個位滿10向十位進1。

(2)筆算兩位數減法,要記三條

1、相同數位對齊;

2、從個位減起;

3、個位不夠減從十位退1,在個位加10再減。

(3)混合運算計演算法則

1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;

2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;

3、算式里有括弧的要先算括弧裡面的。

(4)四位數的讀法

1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;

2、中間有一個0或兩個0隻讀一個「零」;

3、末位不管有幾個0都不讀。

(5)四位數寫法

1、從高位起,按照順序寫;

2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。

(6)四位數減法也要注意三條

1、相同數位對齊;

2、從個位減起;

3、哪一位數不夠減,從前位退1,在本位加10再減。

(7)一位數乘多位數乘法法則

1、從個位起,用一位數依次乘多位數中的每一位數;

2、哪一位上乘得的積滿幾十就向前進幾。

(8)除數是一位數的除法法則

1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;

2、除數除到哪一位,就把商寫在那一位上面;

3、每求出一位商,餘下的數必須比除數小。

(9)一個因數是兩位數的乘法法則

1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;

2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;

3、然後把兩次乘得的數加起來。

(10)除數是兩位數的除法法則

1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,

2、除到被除數的哪一位就在哪一位上面寫商;

3、每求出一位商,餘下的數必須比除數小。

(11)萬級數的讀法法則

1、先讀萬級,再讀個級;

2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;

3、每級末位不管有幾個0都不讀, 其它 數位有一個0或連續幾個零都只讀一個「零」。

(12)多位數的讀法法則

1、從高位起,一級一級往下讀;

2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;

3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。

(13)小數大小的比較

比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。

(14)小數加減法計演算法則

計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。

(15)小數乘法的計演算法則

計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。

(16)除數是整數除法的法則

除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。

(17)除數是小數的除法運演算法則

除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。

(18)解答應用題步驟

1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;

2、確定每一步該怎樣算,列出算式,算出得數;

3、進行檢驗,寫出答案。

(19)列方程解應用題的一般步驟

1、弄清題意,找出未知數,並用X表示;

2、找出應用題中數量之間的相等關系,列方程;

3、解方程;

4、檢驗、寫出答案。

(20)同分母分數加減的法則

同分母分數相加減,分母不變,只把分子相加減。

(21)同分母帶分數加減的法則

帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。

(22)異分母分數加減的法則

異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。

(23)分數乘以整數的計演算法則

分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。

(24)分數乘以分數的計演算法則

分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。

(25)一個數除以分數的計演算法則

一個數除以分數,等於這個數乘以除數的倒數。

(26)把小數化成百分數和把百分數化成小數的 方法

把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;

把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。

(27)把分數化成百分數和把百分數化成分數的方法

把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;

把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。

小學數學口決定義歸類

1、什麼是圖形的周長?

圍成一個圖形所有邊長的總和就是這個圖形的周長。

2、什麼是面積?

物體的表面或圍成的平面圖形的大小叫做他們的面積。

3、加法各部分的關系:

一個加數=和-另一個加數

4、減法各部分的關系:

減數=被減數-差 被減數=減數+差

5、乘法各部分之間的關系:

一個因數=積÷另一個因數

6、除法各部分之間的關系:

除數=被除數÷商 被除數=商×除數

7、角

(1)什麼是角?

從一點引出兩條射線所組成的圖形叫做角。

(2)什麼是角的頂點?

圍成角的端點叫頂點。

(3)什麼是角的邊?

圍成角的射線叫角的邊。

(4)什麼是直角?

度數為90°的角是直角。

(5)什麼是平角?

角的兩條邊成一條直線,這樣的角叫平角。

(6)什麼是銳角?

小於90°的角是銳角。

(7)什麼是鈍角?

大於90°而小於180°的角是鈍角。

(8)什麼是周角?

一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360°.

8、垂直問題

(1)什麼是互相垂直?什麼是垂線?什麼是垂足?

兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。

(2)什麼是點到直線的距離?

從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。

9、三角形

(1)什麼是三角形?

有三條線段圍成的圖形叫三角形。

(2)什麼是三角形的邊?

圍成三角形的每條線段叫三角形的邊。

(3)什麼是三角形的頂點?

每兩條線段的交點叫三角形的頂點。

(4)什麼是銳角三角形?

三個角都是銳角的三角形叫銳角三角形。

(5)什麼是直角三角形?

有一個角是直角的三角形叫直角三角形。

(6)什麼是鈍角三角形?

有一個角是鈍角的三角形叫鈍角三角形。

(7)什麼是等腰三角形?

兩條邊相等的三角形叫等腰三角形。

(8)什麼是等腰三角形的腰?

有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。

(9)什麼是等腰三角形的頂點?

兩腰的交點叫做等腰三角形的頂點。

(10)什麼是等腰三角形的底?

在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。

(11)什麼是等腰三角形的底角?

底邊上兩個相等的角叫等腰三角形的底角。

(12)什麼是等邊三角形?

三條邊都相等的三角形叫等邊三角形,也叫正三角形。

(13)什麼是三角形的高?什麼叫三角形的底?

從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。

(14)三角形的內角和是多少度?

三角形內角和是180°.

10、四邊形

(1)什麼是四邊形?

有四條線段圍成的圖形叫四邊形。

(2)什麼是平等四邊形?

兩組對邊分別平行的四邊形叫做平行四邊形。

(3)什麼是平行四邊形的高?

從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。

(4)什麼是梯形?

只有一組對邊平行的四邊形叫做梯形。

(5)什麼是梯形的底?

在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。

(6)什麼是梯形的腰?

在梯形里,不平等的一組對邊叫梯形的腰。

(7)什麼是梯形的高?

從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。

(8)什麼是等腰梯形?

兩腰相等的梯形叫做等腰梯形。

11、什麼是自然數?

用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。

12、什麼是四捨五入法?

求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。

13、加法意義和運算定律

(1)什麼是加法?

把兩個數合並成一個數的運算叫加法。

(2)什麼是加數?

相加的兩個數叫加數。

(3)什麼是和?

加數相加的結果叫和。

(4)什麼是加法交換律?

兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。

14、什麼是減法?

已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。

15、什麼是被減數?什麼是減數?什麼叫差?

在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。

16、加法各部分間的關系:

和=加數+加數 加數=和-另一加數

17、減法各部分間的關系:

差=被減數-減數 減數=被減數-差 被減數=減數+差

18、乘法

(1)什麼是乘法?

求幾個相同加數的和的簡便運算叫乘法。

(2)什麼是因數?

相乘的兩個數叫因數。

(3)什麼是積?

因數相乘所得的數叫積。

(4)什麼是乘法交換律?

兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。

(5)什麼是乘法結合律?

三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。

19、除法

(1)什麼是除法?

已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。

(2)什麼是被除數?

在除法中,已知的積叫被除數。

(3)什麼是除數?

在除法中,已知的一個因數叫除數。

(4)什麼是商?

在除法中,求出的未知因數叫商。

20、乘法各部分的關系:

積=因數×因數 一個因數=積÷另一個因數

21、除法

(1)除法各部分間的關系:

商=被除數÷除數 除數=被除數÷商

(2)有餘數的除法各部分間的關系:

被除數=商×除數+余數

22、什麼是名數?

通常量得的數和單位名稱合起來的數叫名數。

23、什麼是單名數?

只帶有一個單位名稱的數叫單名數。

24、什麼是復名數?

有兩個或兩個以上單位名稱的數叫復名數。

25、什麼是小數?

仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。

26、什麼是小數的基本性質?

小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。

27、什麼是有限小數?

小數部分的位數是有限的小數叫有限小數。

28、什麼是無限小數?

小數部分的位數是無限的小數叫無限小數。

29、什麼是循環節?

一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。

30、什麼是純循環小數?

循環節從小數第一位開始的叫純循環小數。

31、什麼是混循環小數?

循環節不是從小數部分第一位開始的叫做混循環小數。

32、什麼是四則運算?

我們把學過的加、減、乘、除四種運算統稱四則運算。

33、什麼是方程?

含有未知數的等式叫方程。

34、什麼是解方程?

求方程解的過程叫解方程。

35、什麼是倍數?什麼叫約數?

如果a能被b整除,a就是b的倍數,b就叫a的約數(或a的因數)。

36、什麼樣的數能被2整除?

個位上是0、2、4、6、8的數都能被2整除。

37、什麼是偶數?

能被2整除的數叫偶數。

38、什麼是奇數?

不能被2整除的數叫奇數。

39、什麼樣的數能被5整除?

個位上是0或5的數能被5整除。

40、什麼樣的數能被3整除?

一個數的各位上的和能被3整除,這個數就能被3整除。

41、什麼是質數(或素數)?

一個數如果只有1和它本身兩個約數,這樣的數叫質數。

42、什麼是合數?

一個數除了1和它本身還有別的約數,這樣的數叫合數。

43、什麼是質因數?

每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。

44、什麼是分解質因數?

把一個合數用質因數相乘的形式表示出來叫做分解質因數。

45、什麼是公約數?什麼叫最大公約數?

幾個數公有的約數叫公約數。其中最大的一個叫最大公約數。

46、什麼是互質數?

公約數只有1的兩個數叫互質數。

47、什麼是公倍數?什麼是最小公倍數?

幾個數公有的倍數叫這幾個數的公倍數。其中最小的一個叫這幾個數的最小公倍數。

48、分數

(1)什麼是分數?

把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。

(2)什麼是 分數線 ?

在分數里中間的橫線叫分數線。

(3)什麼是分母?

分數線下面的部分叫分母。

(4)什麼是分子?

分數線上面的部分叫分子。

(5)什麼是分數單位?

把單位「1」平均分成若干份,表示其中的一份叫分數單位。

49、怎麼比較分數大小?

(1)分母相同的兩個分數,分子大的分數比較大。

(2)分子相同的兩個分數,分母小的分子比較大。

(3)什麼是真分數?

分子比分母小的分數叫真分數。

(4)什麼是假分數?

分子比分母大或者分子和分母相等的分數叫假分數。

(5)什麼是帶分數?

由整分數和真分數合成的數通常叫帶分數。

(6)什麼是分數的基本性質?

分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。

(7)什麼是約分?

把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。

(8)什麼是最簡分數?

分子、分母是互質數的分數叫最簡分數。

50、比

(1)什麼是比?

兩個數相除又叫兩個數的比。

(2)什麼是比的前項?

比號前面的數叫比的前項。

(3)什麼是比的後項?

比號後面的數叫比的後項。

(4)什麼是比值?

比的前項除以後項所得的商叫比值。

(5)什麼是比的基本性質?

比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。

51、長方體和正方體

(1)什麼是棱?

兩個 面相 交的邊叫棱。

(2)什麼是頂點?

三條棱相交的點叫頂點。

(3)什麼是長方體的長、寬、高?

相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。

(4)什麼是正方體(立方體)?

長寬高都相等的長方體叫正方體(或立方體)。

(5)什麼是長方體的表面積?

長方體六個面的總面積叫長方體的表面積。

(6)什麼是物體體積?

物體所佔空間的大小叫做物體的體積。

52、圓

(1)什麼是圓心?

圓中心的點叫圓心。

(2)什麼是半徑?

連接圓心和圓上任意一點的線段叫半徑。

(3)什麼是直徑?

通過圓心、並且兩端都在圓上的線段叫直徑。

(4)什麼是圓的周長?

圍成圓的曲線叫圓的周長。

(5)什麼是圓周率?

我們把圓的周長和直徑的比值叫圓周率。

(6)什麼是圓的面積?

圓所圍平面的大小叫圓的面積。

(7)什麼是扇形?

一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。

(8)什麼是弧?

在圓上兩點之間的部分叫弧。

(9)什麼是圓心角?

頂點在圓心上的角叫圓心角。

(10)什麼是對稱圖形?

如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。

53、什麼是百分數?

表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。

54、比例

(1)什麼是比例?

表示兩個比相等的式子叫比例。

(2)什麼是比例的項?

組成比例的四個數叫比例的項。

(3)什麼是比例外項?

兩端的兩項叫比例外項。

(4)什麼是比例內項?

中間的兩項叫比例內項。

(5)什麼是比例的基本性質?

在比例中兩個外項的積等於兩個內項的積。

(6)什麼是解比例?

求比例中的未知項叫解比例。

(7)什麼是正比例關系?

兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。

(8)什麼是反比例關系?

兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。

55、圓柱

(1)什麼是圓柱底面?

圓柱的上下兩個面叫圓柱的底面。

(2)什麼是圓柱的側面?

圓柱的曲面叫圓柱的側面。

(3)什麼是圓柱的高?

圓柱兩個底面的距離叫圓柱的高。

小學數學量的計算單位及進率歸類

1、長度計量單位及進率:

千米(公里)、米、分米、厘米、毫米

1千米=1公里 1千米=1000米

1米=10分米 1分米=10厘米

1厘米=10毫米

2、面積計量單位及進率:

平方千米、公頃、平方米、平方分米、平方厘米

1平方千米=100公頃

1平方千米=1000000平方米

1公頃=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

3、體積容積計量單位及進率:

立方米、立方分米、立方厘米、升、毫升

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升 1立方厘米=1毫升

4、質量單位及進率:

噸、千克、公斤、克

1噸=1000千克

1千克=1公斤

1千克=1000克

5、時間單位及進率:

世紀、年、月、日、小時、分、秒

1世紀=100年 1年=12月

1天=24小時 1小時=60分

1分=60秒

(31天的月份有1、3、5、7、8、10、12月份, 30天的月份有4、6、9、11月份, 平年2月28天,閏年2月29天)

常用計算公式表

1、長方形面積

=長×寬,計算公式S=ab

2、正方形面積

=邊長×邊長,計算公式S=a×a=a2

3、長方形周長

=(長+寬)×2,計算公式C=(a+b)×2

4、正方形周長

=邊長×4,計算公式C=4a

5、平行四邊形面積

=底×高,計算公式S=ah

6、三角形面積

=底×高÷2,計算公式S=a×h÷2

7、梯形面積

=(上底+下底)×高÷2,計算公式S=(a+b)×h÷2

8、長方體體積

=長×寬×高,計算公式V=abh

9、圓的面積

=圓周率×半徑平方,計算公式V=πr2

10、正方體體積

=棱長×棱長×棱長,計算公式V=a3

11、長方體和正方體的體積

都可以寫成底面積×高,計算公式V=sh

12、圓柱的體積

=底面積×高,計算公式V=sh


相關 文章 :

1. 小學數學知識點:和差、和倍與差倍問題詳解

2. 做小學四年級數學上冊知識點總結

3. 小學數學必備概念知識點順口溜

4. 做小學四年級數學上冊知識點總結

5. 小學三年級數學學習內容重點知識匯總

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑵ 高中數學知識點公式

導語:上了高中之後,數學對很多學生來是件頭疼的事情。尤其是對女生來講。但是,我想告訴大家的是:其實數學是最好得分的科目,同時數學又是高考成敗的關鍵。學好數學,基礎是關鍵。牢固並且靈活運用數學的基礎知識很非常重要的!

高中數學知識點框架清單:

1、集合知識點

2、不等式知識點

3、常用邏輯用語知識點

4、導數及其應用知識點

5、概率知識點

6、函數、基本初等函數知識點

7、幾何證明選講知識點

8、計數原理知識點

9、解三角形知識點

10、矩陣與變換知識點

11、空間幾何知識點

12、空間向量及其應用知識點

13、框圖知識點

14、平面向量知識點

15、曲線與方程知識點

16、三角函數知識點

17、數列知識點

18、數系的擴充與復數的引入知識點

19、演算法初步知識點

20、隨機變數及其分布列知識點

21、統計與統計案例知識點

22、推理與證明知識點

23、圓柱、圓錐與圓錐曲線知識點

24、圓錐曲線知識點

25、直線與圓知識點

26、坐標系與參數方程知識點

高中數學有哪些重點公式?

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctg

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0

拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h

正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'

圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長

柱體體積公式 V=s*h 圓柱體 V=pi*r2h

【課外閱讀】:

影響高中數學成績的原因及解決方法

作為衡量一個人能力的重要學科,從小學到高中絕大多數同學對它情有獨鍾,投入了大量的時間與精力.然而並非人人都是成功者,許多小學、初中數學學科成績的佼佼者,進入高中階段,第一個跟頭就栽在數學上。這種現象目前是比較普遍的,應當引起重視。當然造成這種現象的原因是多方面的,本文僅就從學生的學習狀態方面淺談如下:

面對眾多初中學習的成功者淪為高中學習的失敗者,有人對他們的學習狀態進行了研究、調查,表明,造成成績滑坡的主要原因有以下幾個方面.

1.被動學習.許多同學進入高中後,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”.沒有真正理解所學內容。

2.學不得法.老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微.

3.不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼”.

4.進一步學習條件不具備.高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好准備.高中數學很多地方難度大、方法新、分析能力要求高.如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的'.

解決對策:

1.培養良好學習習慣。良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面.

制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力.但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志.

課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上.

上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節.“學然後知不足”,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼.

及時復習是高效率學習的重要一環,通過反復閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比較,一邊復習一邊將復習成果整理在筆記上,使對所學的新知識由“懂”到“會”.

獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由“會”到“熟”.

解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不舍的精神,做錯的作業再做一遍.對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”.

系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統復習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由“活”到“悟”.

課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情.

2.循序漸進,防止急躁

由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想憑幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振.針對這些情況,學生應懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度.

3.研究學科特點,尋找最佳學習方法

數學學科擔負著培養學生運算能力、邏輯思維能力、空間想像能力,以及運用所學知識分析問題、解決問題的能力的重任.它的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高.學習數學一定要講究“活”,只看書不做題不行,埋頭做題不總結積累不行,對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法.華羅庚先生倡導的“由薄到厚”和“由厚到薄”的學習過程就是這個道理.方法因人而異,但學習的四個環節(預習、上課、整理、作業)和一個步驟(復習總結)是少不了的。

⑶ 數學初中全部重要知識點有哪些

內容如下:

1、圓:圓的標准方程(x-a)2+(y-b)2=r2。再知道圓點和半價的情況下使用標准方程列出圓的函數表達式是比較直接的。

2、二次函數(簡稱拋物線):函數表達式:y=ax2+bx+c(a≠0);二次函數的幾個重要性質必須熟記。

3、概率:概率是對隨機事件發生的可能性的度量,一般以一個在0到1之間的實數。

4、三角形相似:我對三角形相似的理解是這樣的,你把三角形方大或者縮小。那麼前後這兩個圖形就叫相似。

5、一元二次方程:表達式ax2+bx+c=0(a≠0)。其實就是二次函數的變形,二次函數把y等於0時對求x的解。

主要特點:

「變數」不同於「未知數」,不能說「二次函數是指未知數的最高次數為二次的多項式函數」。「未知數」只是一個數(具體值未知,但是只取一個值),「變數」可在一定范圍內任意取值。

在方程中適用「未知數」的概念(函數方程、微分方程中是未知函數,但不論是未知數還是未知函數,一般都表示一個數或函數——也會遇到特殊情況),但是函數中的字母表示的是變數,意義已經有所不同。從函數的定義也可看出二者的差別,如同函數不等於函數關系。

⑷ 高二數學知識點有哪些

高中是人生中非常重要的時間段,也是學知識最重要的時間,高二數學知識點有哪些呢。以下是由我為大家整理的「高二數學知識點有哪些」,僅供參考,歡迎大家閱讀。

高二數學知識點有哪些

一、集合、簡易邏輯(14課時,8個)

1.集合;

2.子集;

3.補集;

4.交集;

5.並集;

6.邏輯連結詞;

7.四種命題;

8.充要條件.

二、函數(30課時,12個)

1.映射;

2.函數;

3.函數的單調性;

4.反函數;

5.互為反函數的函數圖象間的關系;

6.指數概念的擴充;

7.有理指數冪的運算;

8.指數函數;

9.對數;

10.對數的運算性質;

11.對數函數.

12.函數的應用舉例.

三、數列(12課時,5個)

1.數列;

2.等差數列及其通項公式;

3.等差數列前n項和公式;

4.等比數列及其通頂公式;

5.等比數列前n項和公式.

四、三角函數(46課時17個)

1.角的概念的推廣;

2.弧度制;

3.任意角的三角函數;

4,單位圓中的三角函數線;

5.同角三角函數的基本關系式;

6.正弦、餘弦的誘導公式;

7.兩角和與差的正弦、餘弦、正切;

8.二倍角的正弦、餘弦、正切;

9.正弦函數、餘弦函數的圖象和性質;

10.周期函數;

11.函數的奇偶性;

12.函數的圖象;

13.正切函數的圖象和性質;

14.已知三角函數值求角;

15.正弦定理;

16餘弦定理;

17斜三角形解法舉例.

五、平面向量(12課時,8個)

1.向量;

2.向量的加法與減法;

3.實數與向量的積;

4.平面向量的坐標表示;

5.線段的定比分點;

6.平面向量的數量積;

7.平面兩點間的距離;

8.平移.

六、不等式(22課時,5個)

1.不等式;

2.不等式的基本性質;

3.不等式的證明;

4.不等式的解法;

5.含絕對值的不等式.

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;

2.直線方程的點斜式和兩點式;

3.直線方程的一般式;

4.兩條直線平行與垂直的條件;

5.兩條直線的交角;

6.點到直線的距離;

7.用二元一次不等式表示平面區域;

8.簡單線性規劃問題;

9.曲線與方程的概念;

10.由已知條件列出曲線方程;

11.圓的標准方程和一般方程;

12.圓的參數方程.

八、圓錐曲線(18課時,7個)

1橢圓及其標准方程;

2.橢圓的簡單幾何性質;

3.橢圓的參數方程;

4.雙曲線及其標准方程;

5.雙曲線的簡單幾何性質;

6.拋物線及其標准方程;

7.拋物線的簡單幾何性質.

拓展閱讀:提升數學成績的方法

錯題分析法

對於數學,多做題是取得數學高分的保證。但是不能忽視糾錯這個環節。有很多同學,他們同樣是非常努力的,但是成績總是不見提高,因為他們只是埋頭題海之中,對做錯的題重視不夠。做了很多的題,完了錯的還是做錯,這樣就得不到提高。要在保證題的數量的同時,把做錯的題一定得搞清楚弄明白,最好能夠反復再算幾遍,爭取下一次遇到同類型的題就可以拿下來,那麼題海戰術才能真正體現它的魅力所在。

總結歸類

首先,根據多年的經驗,我們將解題思路相近甚至相同的習題歸類。其次靜下心來思考解這類題有哪幾種入手途徑,每種途徑在具體操作時我們應當注意什麼問題。比如,使用韋達定理的時候我們要考慮一元二次方程是否有根,特別是我們在做圓錐曲線習題時,有的題目就是通過一元二次方程有根這個條件找參數的范圍。

再次,我們必須選擇一定數量的習題練習來驗證我們的想法。這時候做題一定要仔細完整。接下來,對照答案檢查做得是否正確。如果錯誤,就要分析自己的思路在哪裡出了問題。最後,再回想一遍。以後考試,遇到此類習題就能輕松地找到入手途徑,節省時間。

一題多解法

數學中的很多題目,都可以通過「一題多解」來解決,這個方法可能有些老掉牙,但絕對是有效的方法,同時,學生的數學能力也會隨之提高。但之所以在這里提出來,是因為這樣的方法並不是對於所有知識點都適用的。

舉個例子,對於一道導數題,一般會遵循「求導—極值討論」的步驟進行,很難從中發掘多種解法,而對於三角函數的大題,也一般考查「正餘弦定理」、「三角函數的定義域、值域」,也是一題多解不適用的。而像對於解析幾何這類的壓軸題而言,一題多解就是很能鍛煉我們思維方式。

比方說,研究直線與圓錐曲線位置關系的題目,直線的不同設法(關於x、y的方程),圓錐曲線的不同表示形式(方程形式、三角函數形式)都會對題目的解答產生不同的影響。這就需要我們碰到這類大題,勤於思考,爭取做到「一題多解」。

⑸ 數學初中全部重要知識點有哪些

數學初中重要知識點有:

1、過兩點有且只有一條直線。

2、兩點之間線段最短。

3、同角或等角的補角相等。

4、同角或等角的餘角相等。

5、過一點有且只有一條直線和已知直線垂直。

6、直線外一點與直線上各點連接的所有線段中,垂線段最短。

7、平行公理經過直線外一點,有且只有一條直線與這條直線平行。

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。

9、同位角相等,兩直線平行。

10、內錯角相等,兩直線平行。

11、同旁內角互補,兩直線平行。

12、兩直線平行,同位角相等。

13、性質定理:在垂直平分線上的點到該線段兩端點的距離相等。

14、判定定理:到線段2端點距離相等的點在這線段的垂直平分線上。

15、角平分線:把一個角平分的射線叫該角的角平分線。