1. 高中數學知識結構框架圖
原發布者:呂明龍88
高中數學知識結構框圖必修一:第一章集合第三章基本初等函數(Ⅰ)必修二:第一章立體幾何初步第二章平面解析幾何初步必修三:第一章演算法初步第二章統計第三章概率必修四:第一章基本初等函數(II)第二章平面向量第三章三角恆等變換必修五:第一章解三角形第二章數列第三章不等式選修2-1:第一章常用邏輯用語第二章圓錐曲線與方程第三章空間向量與立體幾何選修2-2:第一章導數及其應用第二章推理與證明第三章數系的擴充與復數選修2-3:第一章計數原理第二章概率第三章統計案例
2. 楂樹腑鏁板︼細蹇呬慨涓銆佷簩銆佷笁銆佸洓銆佷簲錛岄変慨涓銆佷簩銆佷笁銆佸洓錛岀煡璇嗙偣鍏ㄥ綊綰
楂樹腑鏁板︼細蹇呬慨涓銆佷簩銆佷笁銆佸洓銆佷簲錛岄変慨涓銆佷簩銆佷笁銆佸洓錛岀煡璇嗙偣鍏ㄥ綊綰沖備笅鎵紺猴細
涓銆80鍒嗗強浠ヤ笅鐨勮冪敓錛
鍋氬氬皯棰樼洰騫朵笉鏄鏈閲嶈佺殑錛屽逛簬榪欓儴鍒嗚冪敓鑰岃█錛屾妸鍩烘湰鐨勭煡璇嗕綋緋繪⒊鐞嗗ソ錛岃冭瘯蹇呰冮樼洰鐨勯樺瀷鏂規硶鏁寸悊濂借繖鎵嶆槸鏈閲嶈佺殑錛屽︿範瑕佺偣錛氬熀紜鐭ヨ瘑+鍩虹棰樺瀷+鍙樺紡棰樺瀷銆
1銆佽佸︿細鍋氬噺娉曪紝浣犱笉瑕佽椽澶氾紝浠涔堥兘鎯沖︼紝涓寮犲嵎瀛愬摢涓棰樼殑鍒嗘暟閮芥兂寰楋紝榪欐槸涓嶆g『鐨勶紝涓瀹氳佸驚搴忔笎榪涳紝鍏堣В鍐沖姏鎵鑳藉強鐨勫繀鑰冪偣銆
2銆佽佷粠鍩烘湰姒傚康鍏ユ墜錛屽埆涓寮濮嬪氨鍋氱患鍚堥樻垨鑰呴毦棰橈紝鍏堟妸緇忓吀鐨勯樺瀷鎼炴竻妤氾紝鐒跺悗鍐嶅仛涓浜涗腑妗i橈紝娣卞寲涓鐐圭偣灝卞彲浠ヤ簡錛屽厛涓嶇伴毦棰樸
3銆佸緢澶氬︾敓鐨勯棶棰樺氨鍦ㄤ簬鍩烘湰鐨勫叕寮忋佹柟娉曡頒笉浣忥紙璺熸病瀛﹁繃涓鏍鳳紝姣鏃犲嵃璞★級銆佽頒笉娓咃紙妯℃1涓ゅ彲錛屼技鏄鑰岄潪錛夈佽頒笉鐗錛堝綋澶╄頒綇浜嗭紝絎浜屽ぉ鍙堝繕浜嗭級錛屾墍浠ワ紝瀵逛簬涔嬪墠鎺屾彙浜嗙殑鐭ヨ瘑錛岃佸畾鏈熺殑銆侀戠箒鐨勯噸澶嶏紝涓閬嶄竴閬嶇殑鍔犳繁鍗拌薄銆
浠ヤ笂鏄姣忎竴涓楂樹腑瀛︾敓鎵蹇呴』瀛︿範鐨勩備笂榪板唴瀹硅嗙洊浜嗛珮涓闃舵典紶緇熺殑鏁板﹀熀紜鐭ヨ瘑鍜屽熀鏈鎶鑳界殑涓昏侀儴鍒嗭紝鍏朵腑鍖呮嫭闆嗗悎銆佸嚱鏁般佹暟鍒椼佷笉絳夊紡銆佽В涓夎掑艦銆佺珛浣撳嚑浣曞垵姝ャ佸鉤闈㈣В鏋愬嚑浣曞垵姝ョ瓑銆備笉鍚岀殑鏄鍦ㄤ繚璇佹墦濂藉熀紜鐨勫悓鏃訛紝榪涗竴姝ュ己璋冧簡榪欎簺鐭ヨ瘑鐨勫彂鐢熴佸彂灞曡繃紼嬪拰瀹為檯搴旂敤錛岃屼笉鍦ㄦ妧宸т笌闅懼害涓婂仛榪囬珮鐨勮佹眰銆傛ゅ栵紝鍩虹鍐呭硅繕澧炲姞浜嗗悜閲忋佺畻娉曘佹傜巼銆佺粺璁$瓑鍐呭廣
3. 高中數學必修一知識結構框架圖匯總
數學在高中學習中,是很多同學的一大難點,高中數學學習有哪些方法和技巧呢?下面是我整理的高中數學必修一的知識框架,希望能對大家有所幫助。
數學必修一知識結構框架圖
我推薦: 2017年高考全國二卷文科數學答題模板
高考數學二輪復習常見問題
問題一:有的學生在數學第一輪復習中學得很辛苦,拿模擬試卷一考卻不見分數,這是為什麼?
在數學一輪復習中,復習數學重在基礎知識的回顧,目的是讓知識結構中不存在盲區。採用的復習方法是「以課本為本」。在一輪復習結束後,知識點在我們的意識形態中還是孤立的,沒有通過知識點之間的內在關系聯系在一起。
問題二:數學二輪復習的難度大於一輪復習,我基礎不好,跟不上,該怎麼辦?
有很多基礎差的學生在數學一輪復習中還勉強能跟上老師的節奏,而到了數學二輪復習中感覺很殲培碰吃力,跟不上老師的教學節奏,每天的作業中都有很多不會做的題目。
問題三:一輪復習過的知識點在數學二輪復習中記不得或者想不到運用,這該怎麼辦?
在一輪復習結束時,大部分的學生都有拿到數學題目居然不知道從哪下手這種感覺,產生氏談這種現象的原因是大家在學習的時候沒有注重將知識點「連點成線、連線成面」,知識點在你們的中畢大腦中還是孤立的,不能夠「串」起來,因此有時候會「掉線」。
4. 高中數學必修一知識點歸納
初入高中,數學是每個人的必修課。而學習是需要一個系統的框架的。下面是由我為大家整理的「高中數學必修一知識點歸納」,僅供參考,歡迎大家閱讀。
高中數學必修一知識點歸納
高一數學必修1 知識點歸納(一)
一:集合的含義與表示
1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,並且能判斷一個給定的東西是否屬於這個整體。
把研究對象統稱為元素,把一些元素組成的總體叫集合,簡稱為集。
2、集合的中元素的三個特性:
(1)元素的確定性:集合確定,則一元素是否屬於這個集合是確定的:屬於或不屬於。
鉛鎮(2)元素的互異性:一個給定集合中的元素是的,不可重復的。
(3)元素的無序性:集合中元素的位置是可以改變的,並且改變位置不影響集合
3、集合的表示:{…}
(1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
a、列舉法:將集合中的元素一一列舉出來{a,b,c……}
b、描述法:
①區間法:將集合中元素的公共屬性描述出來,寫在大括弧內表示集合。
{xR|x-3>2},{x|x-3>2}
②語言描述法:例:{不是直角三角形的三角形}
③Venn圖:畫出一條封槐首粗閉的曲線,曲線裡面表示集合。
4、集合的分類:
(1)有限集:含有有限個元素的集合
(2)無限集:含有無限個元素的集合
(3)空集:不含任何元素的集合
5、元素與集合的關系:
(1)元素在集合里,則元素屬於集合,即:aA
(2)元素不在集合里,則元素不屬於集合,即:a¢A
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N*或N+
整數集Z
有理數集Q
實數集R
高一數學必修1知識點歸納(二)
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方.
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形.
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑.
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半.
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、台體的體積公式
高一數學必修1知識點歸納(三)
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定芹握它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當時,;當時,;當時,不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組的一組解.
方程組無解;方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點
(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解.
拓展閱讀:高一數學必修一目錄
第一章集合與函數概念
1.1集合
閱讀與思考集合中元素的個數
1.2函數及其表示
閱讀與思考函數概念的發展歷程
1.3函數的基本性質
信息技術應用用計算機繪制函數圖象
實習作業
小結
第二章基本初等函數(Ⅰ)
2.1指數函數
信息技術應用藉助信息技術探究指數函數的性質
2.2對數函數
閱讀與思考對數的發明
探究也發現互為反函數的兩個函數圖象之間的關系
2.3冪函數
小結
復習參考題
第三章函數的應用
3.1函數與方程
閱讀與思考中外歷史上的方程求解
信息技術應用藉助信息技術方程的近似解
3.2函數模型及其應用
信息技術應用收集數據並建立函數模型
實習作業
小結
復習參考題
5. 高一數學公式必修一整理
為了成功地生活,少年人必須學習自立,鏟除埋伏各處的障礙,在家庭要教養他,使他具有為人所認可的獨立人格。下面給大家分享一些關於 高一數學 公式必修一整理,希望對大家有所幫助。
第一章集合與函數概念
一、集合有關概念
1. 集合的含義(研究對象的全體)
2. 集合的中元素的三個特性:
(1) 元素的確定性,互異性,無序性
3.集合的表示:用一個大寫字母表示,列舉法,描述法,自然語言法,區間法,韋恩圖法 (Venn圖)
非負整數集(即自然數集) 記作:N
正整數集 N-或 N+ 整數集Z 有理數集Q 實數集R 復數集C
4、集合的分類:
(1) 有限集 含有有限個元素的集合(2) 無限集 含有無限個元素的集合(3) 空集 不含任何元素的集合
二、集合間的基本關系
包含,包含於A?B,真包含,真包含於,等於=
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n個元素的集合其子集有2n個,真子集有2n-1個
三、集合的運算
並(全要),交(重合),補(剩餘)
第二章、函數的有關概念
1.函數的概念:非空、數集、x的全體、y的唯一。x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合叫做函數的值域是B的子集.
定義域:1式子有意義的條件
(1)分母不等於零;
(2)偶次方根的被開方數大於等於零;
(3)對數式的真數大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)零次冪底數不為0
2生活實際
3抽象函數定義域的求法(由定義域求房間范圍,再由房間范圍求定義域)
2.值域 : 觀察法,幾何法,公式法,圖像法,不等式法,導數法,
3. 函數圖象知識歸納
畫法
A、 描點法:
B、 圖象變換法
常用變換 方法 有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變數的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.
補充:復合函數(同增異減,定義域取交集)
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1
如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
1 任取x1,x2∈D,且x1
2 作差f(x1)-f(x2);
3 變形(通常是因式分解和配方);
4 定號(即判斷差f(x1)-f(x2)的正負);
5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函數的奇偶性(整體性質)
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
利用定義判斷函數奇偶性的步驟:
1首先確定函數的定義域,並判斷其是否關於原點對稱;
2確定f(-x)與f(x)的關系;
3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
注意:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1) 湊配法
2) 待定系數法
3) 換元法
4) 消參法
10.函數最大(小)值(定義見課本p36頁)
1 利用二次函數的性質(配方法)求函數的最大(小)值
2 利用圖象求函數的最大(小)值
3 利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
第三章函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。
即:方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
1 (代數法)求方程的實數根;
2 (幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程有兩相等實根,二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.
5.函數的模型
高一數學公式必修一整理相關 文章 :
★ 高一數學必修一公式大全
★ 高一數學公式總結(必修一)
★ 高一數學必修一集合公式知識點與學習方法
★ 高一數學公式必修一
★ 高中數學必修一知識點框架圖
★ 人教版高中數學必修一知識點規納數學公式
★ 高一數學必修一知識點總結歸納
★ 高一數學必修1知識點歸納
★ 高一數學必修一知識點匯總
★ 高一數學知識點總結【必修一】
6. 求 高中數學 必修一 必修五 的知識框架圖
數列的(必修5)
7. 必修一有哪些
必修一包括很多學科的內容,以下是一些常見的必修一課程:
一、語文必修一
語文必修一通常包含古代文學、現代文學、文化常識等基礎知識。通過閱讀經典文學作品,培養學生的文學素養和審美能力。
二、數學必修一
數學必修一是數學學科的基礎部分,包括集合、函數、數列等基本概念和基礎知識,為學生後續的數學學習和實際應用打下基礎。
三、英語必修一
英語必修一主要涵蓋英語基礎知識,如詞彙、語法、閱讀理解等。通過學習,學生可以掌握基本的英語交流能力和閱讀理解能力。
四、物理必修一
物理必修一介紹物理學的基本概念、原理和實驗方法。包括力學、熱學、光學等基礎知識,為學生後續學習物理專業或應用物理知誤界能提供更堅實的基礎。
五、化學必修一
化學必修一涵蓋化學基礎知識,如化學元素、化學反應、化學鍵等。通過學習,學生可以了解化學學科的基本框架和基本概念。
六、思想政治必修一或其他相關學科必修一
此外,不同學校和教育體系還可能有思想政治必修一或其他相關學科的必修一課程,以培養學生的綜合素質和跨學科能力。
以上是對常見必修一課程的一般解釋。具體內容和要求可能因學校和教育體系的不同而有所差異。建議學生參考所在學校的教學大綱和課程要求,以獲取最准確和詳細的信息。