A. 有趣的數學科普小知識都有哪些
有趣的數學科普小知識如下:
一、阿拉伯數字
阿拉伯數字是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做「阿拉伯數字」。因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。
二、九九歌
九九歌就是我們現在使用的乘法口訣。遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從「九九八十一」起到「二二如四」止,共36句。因為是從「九九八十一」開始,所以取名九九歌。
大約在公元五至十世紀間,九九伏昌神歌才擴充到「一一如一」。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從「一一如一」起到「九九八十一」止。現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為「小九九」;還有一種是81句的,通常稱為「大九九」。
三、莫比烏斯環
莫比烏斯環是一種拓撲學結構,它只有一個面和一個邊界。可以用一根紙條扭轉成180度後,兩頭再粘接起來,就形成了莫比烏斯環。
莫缺虧比烏斯環沿著中線剪開,第一次,可以得到一個更大的環;第二次及以後,每次都會得到兩個互相嵌套的環。中間永遠不會斷迅掘開,這也是莫比烏斯環的神奇之處。
四、克萊因瓶
在1882年,著名數學家菲利克斯·克萊因發現了後來以他的名字命名的著名「瓶子」:克萊因瓶。克萊因瓶就像是一個瓶子,但是它沒有瓶底,它的瓶頸被拉長,然後似乎是穿過了瓶壁,最後瓶頸和瓶底圈連在了一起。有趣的是,如果把克萊因瓶沿著它的對稱線切下去,竟會得到兩個莫比烏斯環。
五、黃金分割
黃金分割提出者是畢達哥拉斯。
有一次,畢達哥拉斯路過鐵匠作坊,被叮叮當當的打鐵聲迷住了。為了揭開這些聲音的秘密,他測量了鐵錘和鐵砧的尺寸,發現它們存在著十分和諧的比例關系。回家後,他取出一根線,分為兩段,反復比較,最後認定1:0.618的比例最為優美。這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割。
B. 有趣的數學科普小知識有哪些
1、假如「一拃」的長度為8厘米,量一下課桌的長為7拃,則可知課桌長為56厘米。如果每步長65厘米,上學時,數一數走了多少步,就能算出從家到學校有多遠。
2、身高也是一把尺子。如果身高是150厘米,那麼抱住一棵大樹,兩手正好合攏,這棵樹的一周的長度大約是150厘米。因為每個人兩臂平伸,兩手指尖之間的長度和身高大約是一樣的。
3、要是想量樹的高,影子也可以幫助。只要量一量樹的影子和自己的影子長度就可以了。因為樹的高度=樹影長×身高÷人影長。
4、若去遊玩,要想知道前面的山距你有多遠,可以請聲音幫量一量。聲音每秒能走331米,那麼對著山喊一聲,再看幾秒可聽到回聲,用331乘聽到回聲的時間,再除以2就能算出來了。
5、「天象記錄員」珊瑚蟲科學家們發現,珊瑚蟲會在自己身上記錄時間:它們在體壁上每天「刻畫」一條環紋,一年「刻畫」365條,既不多也不少。因此想知道它們的年齡,只要數數它們體壁上的環紋即知。科學家們還發現,3.5億年前的珊瑚蟲,每年「刻畫」在身上的環紋不是365條,而是400條。原因是,那時地球自轉一天僅為21.9小時,一年不是365天,而是400天。
C. 數學小知識簡短有哪些
數學小知識簡短:
1、早在2000多年前,我們的祖先就用磁石製作了指示方向的儀器,這種儀器就是司南。
2、最早使用小圓點作為小數點的是德國的數學家,叫克拉維斯。
4、「七巧板」是我國古代的一種拼板玩具,由七塊可以拼成一個大正方形的薄板組成,拼出來的圖案變化萬千,後來傳到國外叫做唐圖。
5、傳說早在四千五百年前,我們的祖先就用刻漏來計時。
6、中國是最早使用四捨五入法進行計算的國家。
7、歐幾里得最著名的著作《幾何原本》是歐洲數學的基礎,提出五大公設,發展為歐幾里得幾何,被廣泛的認為是歷史上最成功的教科書。
8、中國南北朝時代南朝數學家、天文學家、物理學家祖沖之把圓周率數值推算到了第7位數。
9、荷蘭數學家盧道夫把圓周率推算到了第35位。
10、有「力學之父」美稱的阿基米德流傳於世的數學著作有10餘種,阿基米德曾說過:給我一個支點,我可以翹起地球。這句話告訴我們:要有勇氣去尋找這個支點,要用於尋找真理。
11、零。在很早的時候,以為「1」是「數字字元表」的開始,並且它進一步引出了2,3,4,5等其他數字。這些數字的作用是,對那些真實存在的物體,如蘋果、香蕉、梨等進行計數。直到後來,才學會,當盒子里邊已經沒有蘋果時,如何計數里邊的蘋果數。
12、數字系統。數字系統是一種處理「多少」的方法。不同的文化在不同的時代採用了各種不同的方法,從基本的「1,2,3,很多」延伸到今天所使用的高度復雜的十進製表示方法。
D. 有趣的數學科普小知識有哪些
(1)骰子兩邊的數字加起來總是7。
(2)零是一個偶數。
(3)百分比的一個有用的技巧。
你知道y的x%=x的y%嗎?
這可以使計算百分比變得容易得多。例如,試著在你的腦海中計算50的8%。不太容易吧。現在把它倒過來,改為計算8的50%,很明顯哪個更容易。
同樣,75的32%可能看起來很難計算,但32的75%似乎是一個更容易地計算。
(4)每一個奇數,當用英語書寫時,都包含一個"e"。
(5)"4 "是唯一的數字,當用英語書寫時,其拼寫包含的字母數量與數字本身相同。
(6)如果你把13張不同的撲克牌(A(ace),2(two),3(three),4(four),5(five),6(six),7(seven),8(eight),9(nine),10(ten),J(jack),Q(queen),K(king))中的字母數算出來,你會發現有52個字母,正好是一副撲克牌的數量(不包括大小王)。
(7)用英語書寫時,唯一按字母順序拼出的數字是"40(forty)"。唯一一個按反字母順序拼寫的數字是「1(one)」。
(8)你可以只用三刀就把一個蛋糕切成8塊。
以前許多公司都把這個問題作為面試題來測試"發散性思維",現在已經被用濫了,大家都知道。
E. 數學冷知識
這本數學科普書不錯,建議高年級的孩子們都看看。裡面有不少數學冷知識。
羅馬數字表示方法
Ⅰ-1 、Ⅱ-2、Ⅲ-3、Ⅳ-4、Ⅴ-5。
Ⅵ-6、Ⅶ-7、Ⅷ-8、Ⅸ-9、Ⅹ-10
L一50、C一100、D一500、M一 1000。
如果I被放在一個代表較大數的字母前面,就表示「減少1」。IX就代表9,即「比十少一」。
我們現在仍可以在一些鍾表、電視節目的結尾處看到羅馬數字(後者表示節目的製作日期)
羅馬數字是歐洲在阿拉伯數字(實際上是印度數字)傳入之前使用的一種數碼,現在應用較少。它的產生晚於中國甲骨文中的數碼,更晚於埃及人的十進制數字。但是,它的產生標志著一種古代文明的進步。
二進制
二進制是計算技術中廣泛採用的一種數制。二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茨發現。
當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
十進制的數換算成二進制
(1)將給定的十進制整數除以基數2,余數便是等值的二進制的最低位。
(2)將上一步的商再除以基數2,余數便是等值的二進制數的次低位。
(3)重復步驟2,直到最後所得的商等於0為止。各次除得的余數,便是二進制各位的數,最後一次的余數是最高位。
【例】:(89)10=(1011001)
二進制的數轉化成十進制:
按十進制轉化為二進制,反著推。
例如 100101110
按照十進制轉化為二進制,反著推。最高位是1,用商乘除數加余數就是
0x2+1=1…………(余數為1)
1x 2+0=2………… (余數為0)
2x2+0=4 ………… (余數為0)
4x2+1=9……………… (余數為1)
9x2+0=18 ……………( 余數為0)
18x2+1=37 …………(余數為1)
37x2+1=75…………(余數為1)
75x2+1=151………… (余數為1)
151x 2+0=302 ………… (餘0)
所以得到十進制數302。
還可以這樣轉化,把各個拆開,乘以2的次冪。末尾位乘2的0次冪。依次類推1x2^8+0x2^7+0x2^6+1x2^5+0x2^4+1x2^3+1x2^2+1x2^1+0x2^0=302
七橋問題
哥尼斯堡城(今俄羅斯加里寧格勒)是東普魯士的首都,著名的普萊格爾河橫貫其中。
十八世紀在這條河上建有七座橋,這七座橋將河中間的兩個島(上圖中的A、B)與河岸連接起來。其中島與河岸之間架有六座,另一座則連接著兩個島。
當時,居民們有一項普遍喜愛的消遣是在一次行走中跨過全部七座橋而不許重復經過任何一座,但是好像誰也沒有成功。
那麼問題來了:能否一次走遍七座橋,而每座橋只許通過一次?
歐拉證明了七橋問題是無解的。
因為連到一點的數目如是奇數條,就稱為奇點,如果是偶數條就稱為偶點,要想一筆畫成,必須中間點均是偶點,也就是有來路必有另一條去路,奇點只可能在兩端,因此任何圖能一筆畫成,奇點要麼沒有要麼在兩端。
哥尼斯堡七橋問題是18世紀著名古典數學問題之一,簡稱七橋問題,它是一個著名的圖論問題,同時也是拓撲學研究的一個例子。
無限循環小數化成分數
無限小數可按照小數部分是否循環分成兩類:無限循環小數和無限不循環小數。無限不循環小數不能化分數,無限循環小數是可以化成分數的。
那麼,無限循環小數又是如何化分數的呢?策略就是用擴倍的方法,把無限循環小數擴大十倍、一百倍或一千倍……使擴大後的無限循環小數與原無限循環小數的「大尾巴」完全相同,然後這兩個數相減,「大尾巴」就剪掉了!
來看兩個例子:
⑴ 純循環小數
把0.4747……和0.33……化成分數。
想1: 0.4747……×100=47.4747……
0.4747……×100-0.4747……=47.4747……-0.4747……
(100-1)×0.4747……=47
即99×0.4747…… =47
那麼 0.4747……=47/99
想2: 0.33……×10=3.33……
0.33……×10-0.33……=3.33…-0.33……
(10-1) ×0.33……=3
即9×0.33……=3
那麼0.33……=3/9=1/3
由此可見, 純循環小數化分數,它的小數部分可以寫成這樣的分數:純循環小數的循環節最少位數是幾,分母就是由幾個9組成的數;分子是純循環小數中一個循環節組成的數。
⑵混循環小數
把0.4777……和0.325656……化成分數。
想1:0.4777……×10=4.777……①
0.4777……×100=47.77……②
用②-①即得:
0.4777……×90=47-4
所以, 0.4777……=43/90
想2:0.325656……×100=32.5656……①
0.325656……×10000=3256.56……②
用②-①即得:
0.325656……×9900=3256.5656……-32.5656……
0.325656……×9900=3256-32
所以, 0.325656……=3224/9900
F. 有趣的數學科普小知識有哪些
有趣的數學科普小知識有:
1、"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
2、代數給了一種嶄新的解決間題的方式,一種「迴旋」的演年方法。這種「迴旋」是「反向思維」的。讓我們考慮一下這個問題,當給數字25加上17時,結果將是42。這是正向思維。這些數,需要做的只是把它們加起來。
3、在很早的時候,以為「1」是「數字字元表」的開始,並且它進一步引出了2,3,4,5等其他數字。這些數字的作用是,對那些真實存在的物體,如蘋果、香蕉、梨等進行計數。直到後來,才學會,當盒子里邊已經沒有蘋果時,如何計數里邊的蘋果數。4、數字系統是一種處理「多少」的方法。不同的文化在不同的時代採用了各種不同的方法,從基本的「1,2,3,很多」延伸到今天所使用的高度復雜的十進製表示方法。
5、十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。