當前位置:首頁 » 基礎知識 » 高一數學第二章知識
擴展閱讀
動漫貼片是什麼意思 2025-01-30 14:37:15
為同學做的貢獻有哪些 2025-01-30 14:35:27
經典版sp卡怎麼拆 2025-01-30 14:35:27

高一數學第二章知識

發布時間: 2025-01-29 08:57:43

⑴ 高一數學必修一第二章知識點

高一新生要主動地適應環境,而不是環境適應你。因為你走向社會參加工作也得適應社會。以下內容是無憂考網為你整理的 高一數學 必修一第二章知識點,希望你不負時光,努力向前,加油。

高一數學必修一第二章知識點1

方程的根與函數的零點

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點.

3、函數零點的求法:

求函數的零點:

1(代數法)求方程的實數根;

2(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數.

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

高一數學必修一第二章知識點2

空間幾何體表面積體積公式:

1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

3、a-邊長,S=6a2,V=a3

4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

5、稜柱S-h-高V=Sh

6、棱錐S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

11、r-底半徑h-高V=πr^2h/3

12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

高一數學必修一第二章知識點3

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(4)直線系方程:即具有某一共同性質的直線


高一數學必修一第二章知識點相關 文章 :

★ 高一數學必修1各章知識點總結

★ 高中數學高一數學必修一知識點

★ 高一數學必修一知識點匯總

★ 數學高一必修一知識點

★ 高一數學必修一知識點總結歸納

★ 高一數學必修1知識點歸納總結

★ 高一數學必修1知識點歸納

★ 高一數學必修2各章知識點總結

★ 高一數學必修一的知識點總結介紹(2)

★ 高中數學必修一知識點總結

⑵ 高一數學知識

第一章 集合與簡易邏輯
◇ 1.1 集合
◇ 1.2 子集、全集、
◇ 1.2 子集、全集、
◇ 1.2 子集、全集
◇ 1.3 交集、並集
◇ 1.3 交集、並集
◇ 1.4 含絕對值的不等式解法
◇ 1.4 含絕對值的不等式解法2
◇ 1.5 一元一次不等式解法
◇ 1.5 一元一次不等式解法2
◇ 1.6 邏輯聯結詞
◇ 1.7 四種命題
◇ 1.8 充分條件與必要條件
◇ 1.8 充分條件與必要條件2
第二章 函數
◇ 2.1 函數
◇ 2.1 函數的定義域與區間
◇ 2.2 函數的表示法

◇ 2.3 函數的單調性◇
2.4 反函數◇
2.5 指數 教案
◇ 2.6 指數函數
◇ 2.7 對數
◇ 2.8 對數函數
◇ 2.9 函數的應用舉例

第三章 數列
◇ 3.1 數列
◇ 3.2 等差數列
◇ 3.3 等差數列的前n項和
◇ 3.4 等比數列
◇ 3.5 等比數列的前n項和

◇ 數列在分期付款中的應用

第四章 三角函數
◇ 4.1 角的概念的推廣
◇ 4.2 弧度制 教案
◇ 4.3 任意角的三角函數
◇ 4.4同角三角函數的基本關系式

◇ 4.5 正弦、餘弦的誘導公式
◇ 4.6 兩角和與差的正弦餘弦正切
◇ 4.7 二倍角的正弦、餘弦、正切
◇ 正弦函數、餘弦函數的圖象和性質
◇ 4.9 函數的圖象 教案
◇ 4.10 正切函數的圖象和性質
◇ 4.11 已知三角函數值求角
第五章 平面向量
◇ 5.1 向量
◇ 5.2 向量的加法與減法
◇ 5.3 實數與向量的積
◇ 5.4 平面向量的坐標運算
◇ 5.5 線段的定比分點
◇ 5.6 平面向量的數量積及運算律
◇ 5.7 平面向量數量積的坐標表示
◇ 5.8 平移
◇ 5.9 正弦定理、餘弦定理
◇ 5.10 解斜三角形應用舉例
◇ 5.10 解斜三角形應用舉例2
◇ 向量在物理中的應用
希望對您有幫助 謝謝採納

⑶ 高一數學必修一知識點總結

必修1
第一章 集合與函數概念
1.集合的概念及其表示意思;2.集合間的關系;3.函數的概念及其表示;4.函數性質(單調性、最值、奇偶性)
第二章 基本初等函數(I)
一.指數與對數
1.根式;2.指數冪的擴充;3.對數;4.根式、指數式、對數式之間的關系;5.對數運算性質與指數運算性質
二.指數函數與對數函數
1.指數函數與對數函數的圖像與性質;2.指數函數y=ax的關系
三.冪函數 (定義、圖像、性質)

第三章 函數的應用
一.方程的實數解與函數的零點
二.二分法
三.幾類不同增長的函數模型
四.函數模型的應用

⑷ 跪求高一數學必修1和2的重要知識點總結

必修1

第一章 集合與函數概念
1.集合的概念及其表示意思;2.集合間的關系;3.函數的概念及其表示;4.函數性質(單調性、最值、奇偶性)

第二章 基本初等函數(I)
一.指數與對數
1.根式;2.指數冪的擴充;3.對數;4.根式、指數式、對數式之間的關系;5.對數運算性質與指數運算性質
二.指數函數與對數函數
1.指數函數與對數函數的圖像與性質;2.指數函數y=ax的關系
三.冪函數 (定義、圖像、性質)

第三章 函數的應用
一.方程的實數解與函數的零點
二.二分法
三.幾類不同增長的函數模型
四.函數模型的應用

必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
當時,; 當時,; 當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線:(b為常數); 平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中。
(6)兩直線平行與垂直
當,時,

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(7)兩條直線的交點
相交
交點坐標即方程組的一組解。
方程組無解 ; 方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點,

(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點; 當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含; 當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、
俯視圖(從上向下)
註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、台體的體積公式

(4)球體的表面積和體積公式:V= ; S=
4、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。
應用: 判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a。
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法。
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。
③它可以判斷點在直線上,即證若干個點共線的重要依據。
公理3:經過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據
公理4:平行於同一條直線的兩條直線互相平行
空間直線與直線之間的位置關系
① 異面直線定義:不同在任何一個平面內的兩條直線
② 異面直線性質:既不平行,又不相交。
③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.

三種位置關系的符號表示:aα a∩α=A a‖α
(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,
那麼這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。
(線線平行→面面平行),
(3)垂直於同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。
性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規定為。
②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規定為。 ②平面的垂線與平面所成的角:規定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。
在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,
在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

⑸ 高一數學必修一的全部知識點

高一數學上冊
第一章集合與簡易邏輯一集合1.1集合 1.2 子集、全集、補集 1.3交集、並集 1.4含絕對值的不等式解法 1.5一元一次不等式解法 閱讀材料集合中元素的個數 二簡易邏輯1.6邏輯聯結詞 1.7四種命題 1.8充分條件與必要條件 小結與復習 復習參考題一
第二章函數一函數2.1函數 2.2函數的表示法 2.3函數的單調性 2.4反函數 二指數與指數函數2.5指數 2.6指數函數 三對數與對數函數2.7對數 閱讀材料對數的發明 2.8對數函數 2.9函數的應用舉例 閱讀材料自由落體運動的數學模型 實習作業建立實際問題的函數模型 小結與復習 復習參考題二
第三章數列3.1數列 3.2等差數列 3.3等差數列的前n項和 閱讀材料有關儲蓄的計算 3.4等比數列 3.5等比數列的前n項和 研究性學習課題:數列在分期付款中的應用 小結與復習 復習參考題三

高一數學下冊
第四章三角函數一任意角的三角函數4.1角的概念的推廣 4.2弧度制 4.3任意角的三角函數 閱讀材料三角函數與歐拉 4.4同角三角函數的基本關系式 4.5正弦、餘弦的誘導公式 二兩角和與差的三角函數4.6兩角和與差的正弦、餘弦、正切 4.7二倍角的正弦、餘弦、正切 三三角函數的圖象和性質4.8正弦函數、餘弦函數的圖象和性質 4.9函數y=Asin(ωx+φ)的圖象 4.10正切函數的圖象和性質 4.11已知三角函數值求角 閱讀材料潮汐與港口水深 小結與復習復習參考題四第五章平面向量一向量及其運算5.1向量 5.2向量的加法與減法 5.3實數與向量的積 5.4平面向量的坐標運算 5.5線段的定比分點 5.6平面向量的數量積及運算律 5.7平面向量數量積的坐標表示 5.8平移 閱讀材料向量的三種類型 二解斜三角形5.9正弦定理、餘弦定理 5.10解斜三角形應用舉例 實習作業解三角形在測量中的應用 閱讀材料人們早期怎樣測量地球的半徑? 研究性學習課題:向量在物理中的應用 小結與復習復習參考題五

⑹ 高一數學知識點總結歸納

在學習過程中知識的總結往往很重要,那麼高一數學知識點歸納有哪些呢?下面是由我為大家整理的「高一數學知識點總結歸納」,僅供參考,歡迎大家閱讀。

高一數學知識點歸納總結

第一章:集合與函數概念

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上的山;

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y};

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合。

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋};

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5};

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:XKb1.Com。

非負整數集(即自然數集)記作:N;

正整數集:N*或N+;

整數集:納岩沒Z;

有理數集:Q;

實數集:R;

1)列舉法:{a,b,c……};

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{xÎR|x-3>2},{x|x-3>2};

3)語言描述法:例:{不是直角三角形的三角形};

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合;

(2)無限集含有無限個元素的集合;

(3)空集不含任何元素的集合例:{x|x2=-5}。

二、集合間的基本關系

1.「包含」關系—子集

注意:有兩種可能。

(1)A是B的一部分;

(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA;

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)實。

例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」

即:

①任何一個集合是它本身的子集。

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC;

④如果AíB同時BíA那麼A=B;

3.不含任何元素的集合叫做空集,記為Φ;

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集並集補集;

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB};

由所有屬於集合A或屬棗搭於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB});

第二章:基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈*。

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand)。

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0)。由此可得:負數沒有偶次方根;0的任何次洞納方根都是0,記作。

注意:當是奇數時,當是偶數時。

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義;

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪。

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R。

注意:指數函數的底數的取值范圍,底數不能是負數、零和1。

2、指數函數的圖象和性質。

第三章:第三章函數的應用

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點。

3、函數零點的求法:

求函數的零點:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點。

4、二次函數的零點:

二次函數

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

拓展閱讀:如何學好高中數學

讀好課本,學會研究

有些「自我感覺良好」的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的「水平」,好高騖遠,重「量」輕「質」,陷入題海,到正規作業或考試中不是演算出錯就是中途「卡殼」。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。可以把每條定理、每道例題都當作習題,認真地重證、重解,並適當加些批註,特別是通過對典型例題的講解分析,最後要抽象出解決這類問題的數學思想和方法,並做好書面的解題後的反思,總結出解題的一般規律和特殊規律,以便推廣和靈活運用。另外,學生要盡可能獨立解題,因為求解過程,也是培養分析問題和解決問題能力的一個過程,同時更是一個研究過程。

記好筆記,注重課堂

首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高45分鍾課堂效益。

其次,要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。

最後,在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對於那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結症遺留下來,甚至沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。

寫好總結,把握規律

一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高。"不會總結的同學,他的能力就不會提高,挫折經驗是成功的基石。"自然界適者生存的生物進化過程便是最好的例證。學習要經常總結規律,目的就是為了更一步的發展。通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面,簡單概括為四個環節(預習、上課、整理、作業)和一個步驟(復習總結)。每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持「兩先兩後一小結」(先預習後聽課,先復習後做作業,寫好每個單元的總結)的學習習慣。