1. 初中九年級二次函數知識點總結
二次函數:y=ax^2+bx+c (a,b,c是常數,且a不等於0)
a>0開口向上
a<0開口向下
a,b同號,對稱軸在y軸左側,反之,再y軸右側
|x1-x2|=根號下b^2-4ac除以|a|
與y軸交點為(0,c)
b^2-4ac>0,ax^2+bx+c=0有兩個不相等的實根
b^2-4ac<0,ax^2+bx+c=0無實根
b^2-4ac=0,ax^2+bx+c=0有兩個相等的實根
對稱軸x=-b/2a
頂點(-b/2a,(4ac-b^2)/4a)
頂點式y=a(x+b/2a)^2+(4ac-b^2)/4a
函數向左移動d(d>0)個單位,解析式為y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是減
函數向上移動d(d>0)個單位,解析式為y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是減
當a>0時,開口向上,拋物線在y軸的上方(頂點在x軸上),並向上無限延伸;當a<0時,開口向下,拋物線在x軸下方(頂點在x軸上),並向下無限延伸。|a|越大,開口越小;|a|越小,開口越大.
4.畫拋物線y=ax2時,應先列表,再描點,最後連線。列表選取自變數x值時常以0為中心,選取便於計算、描點的整數值,描點連線時一定要用光滑曲線連接,並注意變化趨勢。
二次函數解析式的幾種形式
(1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).
(2)頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.
說明:(1)任何一個二次函數通過配方都可以化為頂點式y=a(x-h)2+k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點.
(2)當拋物線y=ax2+bx+c與x軸有交點時,即對應二次方程ax2+bx+c=0有實數根x1和
x2存在時,根據二次三項式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函數y=ax2+bx+c可轉化為兩根式y=a(x-x1)(x-x2).
求拋物線的頂點、對稱軸、最值的方法
①配方法:將解析式化為y=a(x-h)2+k的形式,頂點坐標(h,k),對稱軸為直線x=h,若a>0,y有最小值,當x=h時,y最小值=k,若a<0,y有最大值,當x=h時,y最大值=k.
②公式法:直接利用頂點坐標公式(- , ),求其頂點;對稱軸是直線x=- ,若a>0,y有最小值,當x=- 時,y最小值= ,若a<0,y有最大值,當x=- 時,y最大值= .
6.二次函數y=ax2+bx+c的圖像的畫法
因為二次函數的圖像是拋物線,是軸對稱圖形,所以作圖時常用簡化的描點法和五點法,其步驟是:
(1)先找出頂點坐標,畫出對稱軸;
(2)找出拋物線上關於對稱軸的四個點(如與坐標軸的交點等);
(3)把上述五個點按從左到右的順序用平滑曲線連結起來.23|評論(6)
2010-11-22 19:50不萊磊磊|四級1、二次函數的定義:如果y=ax2+bx+c(a、b、c為常數,a≠0),那麼y叫x的二次函數.
2、二次函數的圖象:二次函數y=ax2+bx+c的圖象是一條拋物線.
3、二次函數的解析式有下列三種形式:
(1)一般式:y=ax2+bx+c(a≠0);
(2)頂點式:y=a(x-h)2+k(a≠0);
(3)交點式:y=a(x-x1)(x-x2) (a≠0),這里x1,x2是拋物線與x軸兩個交點的橫坐標.
確定二次函數的解析式一般要三個獨立條件,靈活地選用不同方法求出二次函數的解析式是解與二次函數相關問題的關鍵.
4、拋物線y=ax2+bx+c中系數a、b、c的幾何意義
拋物線y=ax2+bx+c的對稱軸是,頂點坐標是,其中a的符號決定拋物線的開口方向.
a>0,拋物線開口向上,a<0,拋物線開口向下;a,b同號時,對稱軸在y軸的左邊;a,b異號時,對稱軸在y軸的右邊;c確定拋物線與y軸的交點(0,c)在x軸上方還是下方.
5、拋物線頂點式y=a(x-h)2+k(a≠0)的特點
(1)a>0,開口向上;a<0,開口向下;
(2)x=h為拋物線對稱軸;
(3)頂點坐標為(h,k).
依頂點式,可以很快地求出二次函數的最值.
當a>0時,函數在x=h處取最小值y=k;
當a<0時,函數在x=h處取最大值y=k.
6、拋物線y=a(x-h)2+k與y=ax2的聯系與區別
拋物線y=a(x-h)2+k與y=ax2的形狀相同,位置不同.前者是後者通過「平移」而得到.
要想弄清拋物線的平移情況,首先將解析式化為頂點式.
7、拋物線y=ax2+bx+c與x軸的兩個交點為A、B,且方程ax2+bx+c=0的兩根為x1,x2,則有A(x1,0),B(x2,0).