當前位置:首頁 » 基礎知識 » 七年級上冊數學月考知識點2020
擴展閱讀
我們的同學英語怎麼讀 2025-01-22 12:19:14

七年級上冊數學月考知識點2020

發布時間: 2025-01-22 04:46:25

A. 初一數學上冊知識點總結

= 總結 所學內容,進行學法的理性 反思 ,強化並進行遷移運用,在訓練中掌握學法。下面給大家帶來一些關於初一數學上冊知識點總結,希望對大家有所幫助。

初一數學上冊知識點1

正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

(二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。5.a?b=a+(?b)減去一個數,等於加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。

3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理數除法

1.先將除法化成乘法,然後定符號,最後求結果。

2.除以一個不等於0的數,等於乘這個數的倒數。

3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。(七)乘方1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。3.同底數冪相乘,底不變,指數相加。

4.同底數冪相除,底不變,指數相減。

(八)有理數的加減乘除混合運演算法則

1.先乘方,再乘除,最後加減。

2.同級運算,從左到右進行。

3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

(九)科學記數法、近似數、有效數字。

初一數學上冊知識點2

1.有理數:

(1)凡能寫成 形式的數,都是有理數,整數和分數統稱有理數.

注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;?不是有理數;

(2)有理數的分類: ① ②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數? 0和正整數; a>0 ? a是正數; a<0 ? a是負數;

a≥0 ? a是正數或0 ? a是非負數; a≤ 0 ? a是負數或0 ? a是非正數.

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0; (2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

(3)相反數的和為0 ? a+b=0 ? a、b互為相反數.

(4)相反數的商為-1.

(5)相反數的絕對值相等

4.絕對值:

(1)正數的絕對值等於它本身,0的絕對值是0,負數的絕對值等於它的相反數;

注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為: 或 ;

(3) ; ;

(4) |a|是重要的非負數,即|a|≥0;

5.有理數比大小:

(1)正數永遠比0大,負數永遠比0小;

(2)正數大於一切負數;

(3)兩個負數比較,絕對值大的反而小;

(4)數軸上的兩個數,右邊的數總比左邊的數大;

(5)-1,-2,+1,+4,-0.5,以上數據表示與標准質量的差, 絕對值越小,越接近標准。

6.倒數:乘積為1的兩個數互為倒數;

注意:0沒有倒數; 若ab=1? a、b互為倒數; 若ab=-1? a、b互為負倒數.

等於本身的數匯總:

相反數等於本身的數:0

倒數等於本身的數:1,-1

絕對值等於本身的數:正數和0

平方等於本身的數:0,1

立方等於本身的數:0,1,-1.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:(1)兩數相乘,同號得正,異號得負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個因式都不為零,積的符號由負因式的個數決定.奇數個負數為負,偶數個負數為正。

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .(簡便運算)

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;

14.乘方的定義:(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 ? a=0,b=0;

(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.混合運演算法則:先乘方,後乘除,最後加減; 注意:不省過程,不跳步驟。

18.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種 方法 ,但不能用於證明.常用於填空,選擇。

初一數學上冊知識點3

實數:

—有理數與無理數統稱為實數。

有理數:

整數和分數統稱為有理數。

無理數:

無理數是指無限不循環小數。

自然數:

表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。

數軸:

規定了圓點、正方向和單位長度的直線叫做數軸。

相反數:

符號不同的兩個數互為相反數。

倒數:

乘積是1的兩個數互為倒數。

絕對值:

數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。

數學定理公式

有理數的運演算法則

⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

⑵減法法則:減去一個數,等於加上這個數的相反數。

⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。

⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。

角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。

數學第一章相交線

一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。

二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成「把一個角的兩邊反向延長而形成的兩個角叫做對頂角」。

初一數學上冊知識點4

多項式除以單項式

一、單項式

1、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字「1」。

12、單項式的次數僅與字母有關,與單項式的系數無關。

二、多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數的概念,但有次數的概念。

7、多項式中次數的項的次數,叫做這個多項式的次數。

三、整式

1、單項式和多項式統稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。

四、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

2、幾個整式相加減,關鍵是正確地運用去括弧法則,然後准確合並同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡。

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

五、同底數冪的乘法

1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。

2、底數相同的冪叫做同底數冪。

3、同底數冪乘法的運演算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。

4、此法則也可以逆用,即:am+n=am﹒an。

5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。

六、冪的乘方

1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。

2、冪的乘方運演算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。

3、此法則也可以逆用,即:amn=(am)n=(an)m。

七、積的乘方

1、積的乘方是指底數是乘積形式的乘方。

2、積的乘方運演算法則:積的乘方,等於把積中的每個因式分別乘方,然後把所得的冪相乘。即(ab)n=anbn。

3、此法則也可以逆用,即:anbn=(ab)n。

八、三種「冪的運演算法則」異同點

1、共同點:

(1)法則中的底數不變,只對指數做運算。

(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。

(3)對於含有3個或3個以上的運算,法則仍然成立。

2、不同點:

(1)同底數冪相乘是指數相加。

(2)冪的乘方是指數相乘。

(3)積的乘方是每個因式分別乘方,再將結果相乘。

九、同底數冪的除法

1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。

2、此法則也可以逆用,即:am-n=am÷an(a≠0)。

十、零指數冪

1、零指數冪的意義:任何不等於0的數的0次冪都等於1,即:a0=1(a≠0)。

十一、負指數冪

1、任何不等於零的數的―p次冪,等於這個數的p次冪的倒數,即:

註:在同底數冪的除法、零指數冪、負指數冪中底數不為0。

十二、整式的乘法

(一)單項式與單項式相乘

1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式。

2、系數相乘時,注意符號。

3、相同字母的冪相乘時,底數不變,指數相加。

4、對於只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。

5、單項式乘以單項式的結果仍是單項式。

6、單項式的乘法法則對於三個或三個以上的單項式相乘同樣適用。

(二)單項式與多項式相乘

1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

3、積是一個多項式,其項數與多項式的項數相同。

4、混合運算中,注意運算順序,結果有同類項時要合並同類項,從而得到最簡結果。

(三)多項式與多項式相乘

1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合並同類項之前,積的項數等於兩個多項式項數的積。

3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用「同號得正,異號得負」。

4、運算結果中有同類項的要合並同類項。

5、對於含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

十三、平方差公式

1、(a+b)(a-b)=a2-b2,即:兩數和與這兩數差的積,等於它們的平方之差。

2、平方差公式中的a、b可以是單項式,也可以是多項式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成

(a+b)?(a-b)的形式,然後看a2與b2是否容易計算。


初一數學上冊知識點總結相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊重點知識整理

★ 七年級上冊數學知識點總結三篇

★ 七年級上冊數學月考知識點整理

★ 七年級英語上冊各單元知識點匯總

★ 初一年級上冊數學的21個熱門知識點

★ 初一上冊數學知識點手抄報

★ 初一上冊數學合並同類項教案

★ 初中七年級上冊數學《整式》教案優質範文五篇

B. 七年級數學上冊知識點總結第四章

有書好好讀,有書趕快讀,讀書的時間不多。只要我們刻苦拼搏一心向上,就一定能取得令人滿意的成績。下面給大家分享一些關於 七年級數學 上冊知識點 總結 第四章,希望對大家有所幫助。

走進圖形世界

1、幾何圖形:

現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。長方形、正方形、三角形、圓等都是平面圖形。

立體圖形與平面圖形:許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和 面相 交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等都是幾何體。

包圍著體的是面。面有平的面和曲的面兩種。面和面相交的地方形成線;線和線相交的地方是點;幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

4、稜柱及其有關概念:

棱:在稜柱中,任何相鄰兩個面的交線,都叫做棱。

側棱:相鄰兩個側面的交線叫做側棱。

n稜柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

稜柱的所有側棱長都相等,稜柱的上下兩個底面是相同的多邊形,直稜柱的側面是長方形。稜柱的側面有可能是長方形,也有可能是平行四邊形。

5、正方體的平面展開圖:11種(略)

6、截一個正方體: 用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

7、三視圖

物體的三視圖指主視圖、俯視圖、左視圖。

主視圖:從正面看到的圖,叫做主視圖。

左視圖:從左面看到的圖,叫做左視圖。

俯視圖:從上面看到的圖,叫做俯視圖。

平面圖形的認識

線段,射線,直線

點、直線、射線和線段的表示

在幾何里,我們常用字母表示圖形。

一個點可以用一個大寫字母表示,如點A

一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示,如直線l,或者直線AB

一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面),如射線l,射線AB

一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示,如線段l,線段AB

點和直線的位置關系有兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關系和它們的長度的大小關系是一致的。

(5)線段的比較:1.目測法 2.疊合法 3.度量法

線段的中點:

點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。

M是線段AB的中點

AM=BM=AB(或者AB=2AM=2BM)

直線的性質

(1)直線公理:經過兩個點有且只有一條直線。

(2)過一點的直線有無數條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

(4)直線上有無窮多個點。

(5)兩條不同的直線至多有一個公共點。

經過兩點有一條直線,並且只有一條直線;兩點確定一條直線;點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

直線上一點和它一旁的部分叫做射線;兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。

角:有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。

平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。

角的表示:

①用數字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

用一副三角板,可以畫出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°

角的度量

角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用「°」表示,1度記作「1°」,n度記作「n°」;度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;

把1°的角60等分,每一份叫做1分的角,1分記作「1』」;

把1』 的角60等分,每一份叫做1秒的角,1秒記作「1」」;

角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較

(3)角可以參與運算。

角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。類似的,還有叫的三等分線。

餘角和補角

① 如果兩個角的和是一個直角等於90°,這兩個角叫做互為餘角,簡稱互余,其中一個角是另一個角的餘角。用數學語言表示為如果∠α+∠β=90°,那麼∠α與∠β互余;反過來,如果∠α與∠β互余,那麼∠α+∠β=90°

②如果兩個角的和是一個平角等於180°,這兩個角叫做互為補角,簡稱互補,其中一個角是另一個角的補角。用數學語言表示為如果∠α+∠β=180°,那麼∠α與∠β互補;反過來如果∠α與∠β互補,那麼∠α+∠β=180°

③同角(或等角)的餘角相等;同角(或等角)的補角相等。

對頂角

① 一對角,如果它們的頂點重合,兩條邊互為反向延長線,我們把這樣的兩個角叫做互為對頂角,其中一個角叫做另一個角的對頂角。

注意:對頂角是成對出現的,它們有公共的頂點;只有兩條直線相交時才能形成對頂角。

②對頂角的性質:對頂角相等

平行線:

在同一個平面內,不相交的兩條直線叫做平行線。平行用符號「∥」表示,如「AB∥CD」,讀作「AB平行於CD」。

注意:(1)平行線是無限延伸的,無論怎樣延伸也不相交。

(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

平行線公理及其推論

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都和第三條直線平行,那麼這兩條直線也互相平行。

補充平行線的判定 方法 :

(1)平行於同一條直線的兩直線平行。

(2)在同一平面內,垂直於同一條直線的兩直線平行。

(3)平行線的定義。

垂直:

兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

直線AB,CD互相垂直,記作「AB⊥CD」(或「CD⊥AB」),讀作「AB垂直於CD」(或「CD垂直於AB」)。

垂線的性質:

性質1:平面內,過一點有且只有一條直線與已知直線垂直。

性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。

點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離。

同一平面內,兩條直線的位置關系:相交或平行。


七年級數學上冊知識點總結第四章相關 文章 :

★ 初一數學上冊知識點歸納

★ 七年級上冊數學知識點總結三篇

★ 初一上冊數學幾何圖形初步知識點

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊基本概念匯總與學習方法

★ 七年級上冊數學全冊概念總結復習

★ 七年級數學上冊知識點

★ 初一數學上冊重點知識整理

★ 七年級數學上冊知識點北師大版

★ 七年級上冊數學月考知識點整理

C. 七年級數學考試知識點整理

課堂臨時報佛腳,不如 課前預習 好。其實任何學科的知識都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

一下冊數學知識點 總結

1、單項式:數字與字母的積,叫做單項式。

2、多項式:幾個單項式的和,叫做多項式。

3、整式:單項式和多項式統稱整式。

4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。

6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、補角:兩個角的和為180度,這兩個角叫做互為補角。

8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、同位角:在「三線八角」中,位置相同的角,就是同位角。

10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、全等圖形:兩個能夠重合的圖形稱為全等圖形。

18、變數:變化的數量,就叫變數。

19、自變數:在變化的量中主動發生變化的,變叫自變數。

20、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

21、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。

22、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。

2021七年級下冊數學知識點

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

初一數學 復習方法

考試與作業邏輯不同:

我們的考試不同於作業,有些孩子作業寫的還可以,准確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標准,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前後一定要上廁所,排解壓力,甚至影響到考試成績。

那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:

復習方法總結

1回歸書本,梳理章節概念公式、性質定理等

就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。

比如知識點填空:

知識點填空

我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。

比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。

再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。

還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。

2題型突破,對各章節常見的 熱點 問題歸納練習。

我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。

大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。

3、熟悉套路、模型

平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。

三角形倒角常見模型:8字型、飛鏢型、折角型。

三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。

學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。

如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。

4、堅持改錯題

把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。


七年級數學考試知識點整理相關 文章 :

★ 七年級數學知識點整理大全

★ 初一數學考試知識點總結

★ 初中七年級數學知識點歸納整理

★ 初一數學知識點歸納梳理

★ 七年級上冊數學月考知識點整理

★ 初一數學必考的21個知識點,附考試重難點

★ 七年級數學知識點整理部編版

★ 七年級數學知識點梳理總結

★ 初中數學知識點整理:

★ 七年級數學的知識點歸納總結