⑴ 七年級上冊數學知識點
第一章 豐富的圖形世界
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
2、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形
生活中的立體圖形
柱:稜柱:三稜柱、四稜柱(長方體、正方體)、五稜柱、……
第二章 有理數
正有理數 整數
有理數 零 有理數
負有理數 分數
2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零
3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。
4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。
5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。
正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。互為相反數的兩個數的絕對值相等。
6、有理數比較大小:正數大於0,負數小於0,正數大於負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。
7、有理數的運算:
(1)五種運算:加、減、乘、除、乘方
多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。
有理數加法法則:
同號兩數相加,取相同的符號,並把絕對值相加。
異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。
一個數同0相加,仍得這個數。
互為相反數的兩個數相加和為0。
有理數減法法則:減去一個數,等於加上這個數的相反數!
有理數乘法法則:
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數與0相乘,積仍為0。
有理數除法法則:
兩個有理數相除,同號得正,異號得負,並把絕對值相除。
0除以任何非0的數都得0。
注意:0不能作除數。
有理數的乘方:求n個相同因數a的積的運算叫做乘方。
正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。
(2)有理數的運算順序
先算乘方,再算乘除,最後算加減,如果有括弧,先算括弧裡面的。
(3)運算律
加法交換律 加法結合律
乘法交換律 乘法結合律
乘法對加法的分配律
8、科學記數法
一般地,一個大於10的數可以表示成的形式,其中,n是正整數,這種記數方法叫做科學記數法。(n=整數位數-1)
第三章 整式及其加減
1、代數式
用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。
注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;
②代數式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;
③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。
※代數式的書寫格式:
①代數式中出現乘號,通常省略不寫,如vt;
②數字與字母相乘時,數字應寫在字母前面,如4a;
③帶分數與字母相乘時,應先把帶分數化成假分數,如應寫作;
④數字與數字相乘,一般仍用“×”號,即“×”號不省略;
⑤在代數式中出現除法運算時,一般寫成分數的形式,如4÷(a-4)應寫作;注意:分數線具有“÷”號和括弧的雙重作用。
⑥在表示和(或)差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如平方米。
2、整式:單項式和多項式統稱為整式。
①單項式:都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。
注意:1.單獨的一個數或一個字母也是單項式;2.單獨一個非零數的次數是0;3.當單項式的系數為1或-1時,這個“1”應省略不寫,如-ab的系數是-1,a3b的系數是1。
②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。
3、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。
②同類項與系數無關,與字母的排列順序無關;
③幾個常數項也是同類項。
4、合並同類項法則:把同類項的系數相加,字母和字母的指數不變。
5、去括弧法則
①根據去括弧法則去括弧:
括弧前面是“+”號,把括弧和它前面的“+”號去掉,括弧里各項都不改變符號;括弧前面是“-”號,把括弧和它前面的“-”號去掉,括弧里各項都改變符號。
②根據分配律去括弧:
括弧前面是“+”號看成+1,括弧前面是“-”號看成-1,根據乘法的分配律用+1或-1去乘括弧里的每一項以達到去括弧的目的。
6、添括弧法則
添“+”號和括弧,添到括弧里的各項符號都不改變;添“-”號和括弧,添到括弧里的各項符號都要改變。
7、整式的運算:
整式的加減法:(1)去括弧;(2)合並同類項。
第四章 基本平面圖形
2、直線的性質
(1)直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線。)
(2)過一點的直線有無數條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。
3、線段的性質
(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。
(3)線段的大小關系和它們的長度的大小關系是一致的。
4、線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。
6、角的表示
角的表示方法有以下四種:
①用數字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。
④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。
7、角的度量
角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
8、角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
9、角的性質
(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。
(2)角的大小可以度量,可以比較,角可以參與運算。
10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。
11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。
從一個n邊形的同一個頂點出發,分別連接這個頂點與其餘各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。
12、圓:平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
第五章 一元一次方程
1、方程
含有未知數的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數的值叫做方程的解。
3、等式的性質
(1)等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。
(2)等式的兩邊同時乘以同一個數((或除以同一個不為0的數),所得結果仍是等式。
4、一元一次方程
只含有一個未知數,並且未知數的最高次數是1的整式方程叫做一元一次方程。
5、移項:把方程中的某一項,改變符號後,從方程的一邊移到另一邊,這種變形叫做移項.
6、解一元一次方程的一般步驟:
(1)去分母(2)去括弧(3)移項(把方程中的某一項改變符號後,從方程的一邊移到另一邊,這種變形叫移項。)(4)合並同類項(5)將未知數的系數化為1
第六章 數據的收集與整理
1、普查與抽樣調查
為了特定目的對全部考察對象進行的全面調查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。
從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。
2、扇形統計圖
扇形統計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分佔總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個扇形所佔的百分比之和為1)
圓心角度數=360°×該項所佔的百分比。(各個部分的圓心角度數之和為360°)
3、頻數直方圖
頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進行了分組畫在橫軸上,縱軸表示各組數據的頻數。
4、各種統計圖的特點
條形統計圖:能清楚地表示出每個項目的具體數目。
折線統計圖:能清楚地反映事物的變化情況。
扇形統計圖:能清楚地表示出各部分在總體中所佔的百分比。
⑵ 七年級數學重要知識點有哪些
數學可能對於大部分學生來說都是一個很讓人頭疼的科目,往往都學不好。雖然在學習的道路上我們會遇到許多困難,
但只要努力解決這些困難後,你將會感覺到無比輕松與快樂。所以我給大家整理了七年級數學上冊的知識點,方便大家學習。
一:有理數
知識網路:
概念、定義:
1、大於0的數叫做正數(positive number)。
2、在正數前面加上負號「-」的數叫做負數(negative number)。
3、整數和分數統稱為有理數(rational number)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。
7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大於0,0大於負數,正數大於負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
13、有理數減法法則
減去一個數,等於加上這個數的相反數。
14、有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
18、一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等於0的數,等於乘這個數的倒數。
20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最後加減;
(2)同級運算,從左到右進行;
(3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
24、把一個大於10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)
注:黑體字為重要部分
二:整式的加減
知識網路:
概念、定義:
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的系數(coefficient)。
3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly
term)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。
6、把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。
7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;
8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
三:一元一次方程
知識網路:
概念、定義:
1、列方程時,要先設字母表示未知數,然後根據問題中的相等關系,寫出還有未知數的等式——方程(equation)。
2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。
3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。
4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。
6、把等式一邊的某項變號後移到另一邊,叫做移項。
7、應用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間
盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%
售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間
本息和=本金+利息
四:圖形初步認識
知識網路:
概念、定義:
1、我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。
5、幾何體簡稱為體(solid)。
6、包圍著體的是面(surface),面有平的面和曲的面兩種。
7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。
8、點動成面,面動成線,線動成體。
9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。
簡述為:兩點確定一條直線(公理)。
10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。
12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。
14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。
17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementary
angle),即其中的每一個角是另一個角的餘角。
18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementary
angle),即其中一個角是另一個角的補角
19、等角的補角相等,等角的餘角相等。
⑶ 江蘇省七年級學代數嗎
初中七年級數學課程內容豐富多樣,既包含了幾何知識,也涵蓋了代數內容。學生在七年級會接觸到各種幾何概念,比如直線公理、線段公理、垂線段公理和角的度量等。然而,代數內容占據了一定比例,例如有理數、整式的加減、一元一次方程、二元一次方程組和一元一次不等式等,這些都是代數學習的重點。
此外,七年級數學課程還包括了一項重要的知識點——平面直角坐標系。這一章的內容不僅涵蓋了代數,還涉及到了幾何,因為平面直角坐標系是將代數和幾何知識相結合的一種方式。學生通過平面直角坐標系,可以直觀地理解代數表達式和幾何圖形之間的關系,這對於培養學生的數學思維能力非常重要。
總的來說,七年級數學課程旨在幫助學生建立堅實的數學基礎,使他們在後續的學習中能夠更加輕松地掌握更復雜的數學知識。通過學習這些代數和幾何內容,學生不僅能提高解題技巧,還能培養邏輯思維能力和問題解決能力。
⑷ 七年級上冊數學重點知識點
數學在初中學習中是一門十分重要的科目,下面是總結的一些七年級上冊的重點數學知識點,供大家參考。
整式
1.整式:單項式和多項式的統稱叫整式。
2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3.系數;一個單項式中,數字因數叫做這個單項式的系數。
4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5.多項式:幾個單項式的和叫做多項式。
6.項:組成多項式的每個單項式叫做多項式的項。
7.常數項:不含字母的項叫做常數項。
8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
有理數
1.有理數的概念:正整數、0、負整數、正分數、負分數統稱為有理數;數軸與原點:用一條直線上的點表示數,這條直線就叫做數軸,在這條直線上任取一個點表示0,這個點叫做原點,在原點的左邊或原點下邊的點到原點的距離用負數表示,在原點的右邊或上邊的數到原點的距離用正數表示,在數軸上與原點距離相反相等的兩個點代表的兩個數為相反數,在數軸上表示的點a到原點的距離叫這個數的絕對值。
2.有理數的加減法:同號的兩個數相加,符號不變,絕對值相加;絕對值不相等的異號兩數相加,和取絕對值較大的加數的符號,並用較大的數的絕對值減較小的數的絕對值,互為相反數的兩個數相加得0;一個有理數減去另一個有理數,相當於加這個數的相反數;
3.有理數的乘除法:同號兩個數相乘,同號得正,異號得負,乘法的積為他們的絕對值相乘,除法為被除數乘以除數的倒數,除數不能為0;乘積是1的兩個數互為倒數,0沒有倒數;整數的乘法交換率和結合率同樣適用於有理數;求n個相同因數的積的運算叫乘方,乘方的結果叫做冪,在a的n次方中a叫做底數,n叫做指數,寫作a∧n;
4.有理數的混合運算:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行;
5.科學記數法:把一個大於10的數表示成a×10∧n的形式叫做科學計數法,其中a大於或等於1且小於10,n為正整數。
角
1.角:角是由兩條有公共端點的射線組成的幾何對象。
2.角的度量單位:度、分、秒
3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點
4.角的比較:
(1)角可以看成是由一條射線繞著他的端點旋轉而成的。
(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。
(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
5.餘角和補角:
(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。
性質:等角的餘角相等
(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。
性質:等角的補角相等
平行線
1.在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4.判定兩條直線平行的方法:
(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。