當前位置:首頁 » 基礎知識 » 高中數學知識點全總結零基礎
擴展閱讀
動漫貼紙有哪些好看的 2025-01-08 13:28:51
經典音樂u盤怎麼下載 2025-01-08 13:26:36

高中數學知識點全總結零基礎

發布時間: 2025-01-07 07:38:28

『壹』 高中數學知識點總結

進入高中之後,數學對於許多學生來說,是一個學習較難的科目,且一些學生在數學這門課上都是越學越不會,那麼高中數學知識點有哪些?下面是我給大家帶來的高中數學知識點 總結 _高中數學知識點最全版,以供大家參考!

高中數學知識點總結1

1、命題的四種形式及其相互關系是什麼?

(互為逆否關系的命題是等價命題。)

原命題與逆否命題同真、同假;逆命題與否命題同真同假。

2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?

(一對一,多對一,允許B中有元素無原象。)

3、 函數的三要素是什麼?如何比較兩個函數是否相同?

(定義域、對應法則、值域)

4、反函數存在的條件是什麼?

(一一對應函數)

求反函數的步驟掌握了嗎?

(①反解x;②互換x、y;③註明定義域)

5、反函數的性質有哪些?

①互為反函數的圖象關於直線y=x對稱;

②保存了原來函數的單調性、奇函數性;

6、 函數f(x)具有奇偶性的必要(非充分)條件是什麼?

(f(x)定義域關於原點對稱)

高中數學知識點總結2

1、三類角的求法:

①找出或作出有關的角。

②證明其符合定義,並指出所求作的角。

③計算大小(解直角三角形,或用餘弦定理)。

2、正稜柱——底面為正多邊形的直稜柱

正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

3、怎樣判斷直線l與圓C的位置關系?

圓心到直線的距離與圓的半徑比較。

直線與圓相交時,注意利用圓的「垂徑定理」。

4、 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。

不看後悔!清華名師揭秘學好高中數學的 方法

培養興趣是關鍵。學生對數學產生了興趣,自然有動力去鑽研。如何培養興趣呢?

(1) 欣賞數學的美感

比如幾何圖形中的對稱、變換前後的不變數、概念的嚴謹、邏輯的嚴密……

舉個例子,

通過對旋轉變換及其不變數的討論,我們可以證明反比例函數、「對勾函數」的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小於兩個定點之間的距離)的點的集合。

(2)注意到數學在實際生活中的應用。

例如和日常生活息息相關的等額本金、等額本息兩種不同的還款方式,用數列的知識就可以理解.

學好數學,是現代公民的 基本素養 之一啊.

(3)採用靈活的教學手段,與時俱進。

利用多種技術手段,聲、光、電多管齊下,老師可以藉此把一些知識講得更具體形象,學生也更容易接受,理解更深。

(4)適當看一些科普類的書籍和 文章 。

比如:學圓錐曲線的時候,可以看看一些建築物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質的應用,這方面的文章也不少。

高中數學知識點總結3

1、抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。

2、對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。

3、向量——既有大小又有方向的量。在此規定下向量可以在平面(或空間)平行移動而不改變。

4、並線向量(平行向量)——方向相同或相反的向量。規定零向量與任意向量平行。


高中數學知識點總結相關文章:

★ 高中數學學習方法:知識點總結最全版

★ 高中數學知識點全總結最全版

★ 高中數學知識點總結

★ 高中高一數學知識點總結

★ 高一數學知識點全面總結

★ 高中數學知識點全總結

★ 高中數學知識點總結及公式大全

★ 高二數學知識點總結

★ 高中數學知識點歸納最新

★ 高中數學知識點大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『貳』 高一數學知識點總結歸納

在學習過程中知識的總結往往很重要,那麼高一數學知識點歸納有哪些呢?下面是由我為大家整理的「高一數學知識點總結歸納」,僅供參考,歡迎大家閱讀。

高一數學知識點歸納總結

第一章:集合與函數概念

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上的山;

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y};

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合。

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋};

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5};

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:XKb1.Com。

非負整數集(即自然數集)記作:N;

正整數集:N*或N+;

整數集:納岩沒Z;

有理數集:Q;

實數集:R;

1)列舉法:{a,b,c……};

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{xÎR|x-3>2},{x|x-3>2};

3)語言描述法:例:{不是直角三角形的三角形};

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合;

(2)無限集含有無限個元素的集合;

(3)空集不含任何元素的集合例:{x|x2=-5}。

二、集合間的基本關系

1.「包含」關系—子集

注意:有兩種可能。

(1)A是B的一部分;

(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA;

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)實。

例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」

即:

①任何一個集合是它本身的子集。

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC;

④如果AíB同時BíA那麼A=B;

3.不含任何元素的集合叫做空集,記為Φ;

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集並集補集;

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB};

由所有屬於集合A或屬棗搭於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB});

第二章:基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈*。

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand)。

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0)。由此可得:負數沒有偶次方根;0的任何次洞納方根都是0,記作。

注意:當是奇數時,當是偶數時。

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義;

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪。

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R。

注意:指數函數的底數的取值范圍,底數不能是負數、零和1。

2、指數函數的圖象和性質。

第三章:第三章函數的應用

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點。

3、函數零點的求法:

求函數的零點:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點。

4、二次函數的零點:

二次函數

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

拓展閱讀:如何學好高中數學

讀好課本,學會研究

有些「自我感覺良好」的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的「水平」,好高騖遠,重「量」輕「質」,陷入題海,到正規作業或考試中不是演算出錯就是中途「卡殼」。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。可以把每條定理、每道例題都當作習題,認真地重證、重解,並適當加些批註,特別是通過對典型例題的講解分析,最後要抽象出解決這類問題的數學思想和方法,並做好書面的解題後的反思,總結出解題的一般規律和特殊規律,以便推廣和靈活運用。另外,學生要盡可能獨立解題,因為求解過程,也是培養分析問題和解決問題能力的一個過程,同時更是一個研究過程。

記好筆記,注重課堂

首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高45分鍾課堂效益。

其次,要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。

最後,在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對於那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結症遺留下來,甚至沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。

寫好總結,把握規律

一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高。"不會總結的同學,他的能力就不會提高,挫折經驗是成功的基石。"自然界適者生存的生物進化過程便是最好的例證。學習要經常總結規律,目的就是為了更一步的發展。通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面,簡單概括為四個環節(預習、上課、整理、作業)和一個步驟(復習總結)。每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持「兩先兩後一小結」(先預習後聽課,先復習後做作業,寫好每個單元的總結)的學習習慣。

『叄』 高中數學有哪些知識點

高中數學知識點


一、函數與代數


* 代數式:包括整式、分式及其運算。


* 代數方程:一元方程、二元方程組的解法及應用。


* 函數概念:函數的定義、性質、圖象等,以及常見的函數類型如一次函數、二次函數等。


二、幾何


* 平面幾何:圖形的性質,如三角形、四邊形等,以及角度的計算。


* 解析幾何:坐標系中的點、直線、曲線的性質及方程。


* 空間向量與立體幾何:空間向量的概念及其運算,立體圖形的性質。


三、三角函數與解析幾何應用


* 三角函數的性質及其公式。


* 三角函數的圖像變換與應用。


* 三角函數與解析幾何的綜合應用。


四、數列與數學歸納法


* 數列的概念及分類。


* 等差數列與等比數列的性質及應用。


* 數學歸納法及其應用。


五、微積分基礎


* 導數的概念及計算。


* 微分的幾何意義與應用。


* 積分的基本概念及計算。


六、不等式與線性規劃


* 不等式的性質及解法。


* 線性規劃問題的基本解法。


以上知識點是高中數學的核心內容,每一部分都包含了豐富的知識和解題技巧,需要同學們認真學習,熟練掌握。同時,高中數學也強調各知識點間的綜合應用,解決實際問題的能力也是數學學習的重點之一。


對於每一個知識點,都需要理解其基本概念,掌握其性質和定理,並能夠熟練運用相關的公式和解題方法。此外,數學的學習也需要大量的練習,通過不斷的練習來加深對知識點的理解和掌握,提高解題的速度和准確性。

『肆』 高中數學所有知識點歸納

知識點歸納:
1、集合與函數的概念,集合之間的關系。
2、空間幾何體,點,線,面之間的關系。
3、統計學與概率的計算。
4、三角函數的應用與相關基本關系。
5、數列,不等關系與不等關系式。
6、數系的擴充與復數的計算。
7、圓錐曲線與方程之間的關系。
8、隨機變數及其分布。

『伍』 高中數學知識點全總結

高中數學知識點全總結 : 1、數列或者三角函數;2、立體幾何;3、概率統計;4、圓錐曲線;5、導數;6、選修題(參數方程和不等式)。

1、三角函數

對於三角函數的考法共有兩種。分別是解三角形和三角函數本身。大概百分之十到二十的概率考解三角形,百分之八十到九十概率考對於三角函數本身的熟練運用。

2、概率統計

以理科數學為例,考點覆蓋概率統計必修和選修的各個章節的內容,考查了抽樣法、統計圖表、數據的數字特徵、用樣本估計整體、回歸分析、獨立性檢驗、古典概型、幾何概型、條件概率、相互獨立事件的概率、獨立重復試驗的概率、離散型隨機變數的分布列、數學期望與方差、超幾何分布、二項分布、正態分布等基礎知識和基本方法。

3、立體幾何

這道題有兩到三問,前面問的某條線的大小或者證明某個線或面與另外一個線或面平行或垂直,最後一問是求二面角。

4、數列

數列主要是求解通項公式和前n項和。首先是通項公式,要看題目中給出的條件形式,不同的形式對應不同的解題方法,其中主要包括公式法(定義法)、累加法、累乘法、待定系數法、數學歸納法 倒數變化法等,熟練應用這些方法並積累例題達到熟練的程度。

5、圓錐曲線

一般套路就是,前半部分是對基本性質的考察,後半部分考察與直線相交,且後半部分的步驟幾乎都是一致的。