Ⅰ 人教版初二數學知識點總結
知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
數據的分析
1、平均數
①一般地,對於n個數x1x2...xn,我們把(x1+x2+???+xn)叫做這n個數的算數平均數,簡稱平均數記為。
②在實際問題中,一組數據里的各個數據的「重要程度」未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數。
2、中位數與眾數
①中位數:一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
②一組數據中出現次數最多的那個數據叫做這組數據的眾數。
③平均數、中位數和眾數都是描述數據集中趨勢的統計量。
④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。
⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息。
⑥各個數據重復次數大致相等時,眾數往往沒有特別意義。
3、從統計圖分析數據的集中趨勢
4、數據的離散程度
①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對於集中趨勢的偏離情況。一組數據中數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量。
②數學上,數據的離散程度還可以用方差或標准差刻畫。
③方差是各個數據與平均數差的平方的平均數。
④其中是x1,x2.....xn平均數,s2是方差,而標准差就是方差的算術平方根。
⑤一般而言,一組數據的極差、方差或標准差越小,這組數據就越穩定。
八年級 數學知識點歸納
分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的 方法 分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
學好數學的關鍵就在於要適時適量地進行 總結 歸類,接下來我就為大家整理了這篇人教版八年級數學全等三角形知識點講解,希望可以對大家有所幫助。
全等三角形的性質:全等三角形對應邊相等、對應角相等。
全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等
角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的'邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
人教版八年級數學全等三角形知識點講解就為大家介紹到這里了,希望大家都能養成善於總結的好習慣。
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
初二數學 復習方法 總結
一、初中數學中考復習方法:
數學家華羅庚曾經說過:「聰明在於學習,天才在於勤奮」,勤能補拙是良訓,一分辛勞一分才。
1.復習一定要做到勤
勤動手:做題不要看,一定要算,不會的知識點寫下來,記在 筆記本 上。
勤動口:不會的有疑問的一定要問老師,時間不等人,在沒有時間可以浪費。而且學會與同學討論問題。
勤動耳:老師講的復習課一定要聽,不要認為這道題會,老師講就可以溜號,須知溫故可知新。
勤動腦:善於思考問題,積極思考問題——吸收、儲存信息
勤動腿:不要參加過於激烈的運動,防止受傷影響學習,但要運動,每天慢跑30分鍾即可,報至狀態。
2.初中數學復習還要強調兩個要點:
一要:動手,二要:動腦。
動腦就是要學會觀察分析問題,學會思考,不要拿到題就做,找到已知和未知之間的聯系,多問幾個為什麼,多體會考的哪個知識點。
動手就是多實踐,多做題,要拳不離手曲不離口。同學就是題不離手,這兩個要點大家要記住並且要堅持住。動腦又動手,才能地發揮大腦的效率。這也是老師的 經驗 。
3.用心做到三個一遍
上課要認真聽一遍:聽老師講的方法知識等。
動手算一遍:按照老師的思路算一遍看看是否融會貫通。
認真想一遍:想想為什麼這么做題,考的哪個知識。
4.重視簡單的學習過程
讀好一本教科書它是教學、中考的主要依據;
記好一本筆記方法知識是教師多年經驗的結晶,每人自己准備一本錯題集;
做好做凈一本習題集它是使知識拓寬;
這些看似平凡簡單,但是確實老師親身的體驗,用心觀察我們的中考、高考狀元,其實他們每天重復的不就是老師剛剛說的嗎?
沒有寶典神功,只有普普通通。最最難能可貴的是堅持。
資源可以的話,找幾套往屆的期末考試題,是自己縣區的,其他縣區也可以(考點差不多一樣的),在規定時間內,摸摸底,熟悉每個章節考的的題型,練練自己的做題效率。很多同學第一次做練習出錯,如果不及時糾正、 反思 ,而僅僅是把答案改正,那麼他沒有真正地弄明白自己到底錯在什麼地方,也就沒弄明白如何應用這部分知識,最終會導致在今後遇到類似的問題一錯再錯。
人教版初二數學知識點總結相關 文章 :
★ 初二數學知識點歸納上冊人教版
★ 人教版八年級數學上冊知識點總結
★ 初二數學人教版知識點總結歸納
★ 初二數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 人教版初二數學上知識點總結
★ 初二數學上冊知識點總結人教版
★ 人教版初二數學上學期知識點總結
★ 初二數學知識點人教版
★ 人教版初二上數學知識點
Ⅱ 人教版八年級上冊數學知識點歸納
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。歸納整理了人教版八年級數學上冊知識點,歡迎閱讀,希望對你復習有幫助。
人教版八年級數學上冊知識點總結
第十一章 三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9.多邊形的外角:多邊形族裂漏的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。鑲嵌的條件:當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個時,就能拼成一個平面圖形。
13.公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
⑶多邊形內角和公式:邊形的內角和等於·180°
⑷多邊形的外角和:多邊形的外角和為360°。
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形.②邊形共有條對角線。
第十二章 全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形。
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形。
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點。
⑷對應邊:全等三角形中互相重合的邊叫做對應邊。
⑸對應角:全等三角形中互相重合的角叫做對應角。
2.基本性質:
⑴三角形的穩定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩定性。
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等。
3.全等三角形的判定定理:
⑴邊邊邊():三邊對應相等的兩個三角形全等。
⑵邊角邊():兩邊和它們的夾角對應相等的兩個三角形全等。
⑶角邊角():兩角和它們的夾邊對應相等的兩個三角形全等。
⑷角角邊():兩角和其中一個角的對邊對應相等的兩個三角形全等。
⑸斜邊、直角邊():斜邊和一條直角邊對應相等的兩個直角三角形全等。
4.角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等。
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上。
5.證明的基本方法:
⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據題意,畫出圖形,並用數字元號表示已知和求證。
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程。
第十三章 軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個源指圖形就叫做兆爛軸對稱圖形。
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱。
⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線。
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。
2.基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線。
②對稱的圖形都全等。
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等。
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
⑶關於坐標軸對稱的點的坐標性質
。
⑷等腰三角形的性質:
①等腰三角形兩腰相等。
②等腰三角形兩底角相等(等邊對等角)。
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合。
④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
⑸等邊三角形的性質:
①等邊三角形三邊都相等。
②等邊三角形三個內角都相等,都等於60°
③等邊三角形每條邊上都存在三線合一。
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條)。
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形。
②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)。
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形。
②三個角都相等的三角形是等邊三角形。
③有一個角是60°的等腰三角形是等邊三角形。
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線。
⑷作已知圖形關於某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短。
第十四章 整式的乘除與分解因式
一、知識框架:
第十五章 分式
一、知識框架 :
●●●END●●●
Ⅲ 人教版八年級數學上冊的知識要點
回答:人教版八年級數學上冊的知識要點很多。每一章有每一章的知識點嫌笑。如,全等三角形這一章,知道全等三角形的性質與判定及應用,它是證明兩個角,線段相等的依據。還有角的平分線、線段的垂直平分線的性質與判定。會畫軸對稱圖形及它的性質。實數的范圍,與數軸的對應關系,無理數的理解。一次函數中:會寫解析式、畫圖象、掌握它的性質及與一次方程、不等式的關系。如喊整式的乘除這一章,基礎較多,如,同底數冪的乘法與除法,積的乘方,冪的乘方。特別是平方差公式和完全平方公式,它不但是乘法的重點也是因式分解的重要公式,必須掌握。芹橡含
Ⅳ 人教版八年級數學知識點
學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
分式方程
一、理解定義
1、分式方程:含分式,並且分母中含未知數的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。
(2)解這個整式方程。
(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須捨去。
(4)寫出原方程的根。
「一化二解三檢驗四 總結 」
3、增根:分式方程的增根必須滿足兩個條件:
(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;
(3)解整式方程;(4)驗根;
註:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
5、分式方程解實際問題
步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。
二、軸對稱圖形:
一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。
1、軸對稱:
兩個圖形沿一條直線對折,其中一個圖形能夠與另一個圖形完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。
2、軸對稱圖形與軸對稱的區別與聯系:
(1)區別。軸對稱圖形討論的是「一個圖形與一條直線的對稱關系」;軸對稱討論的是「兩個圖形與一條直線的對稱關系」。
(2)聯系。把軸對稱圖形中「對稱軸兩旁的部分看作兩個圖形」便是軸對稱;把軸對稱的「兩個圖形看作一個整體」便是軸對稱圖形。
3、軸對稱的性質:
(1)成軸對稱的兩個圖形全等。
(2)對稱軸與連結「對應點的線段」垂直。
(3)對應點到對稱軸的距離相等。
(4)對應點的連線互相平行。
三、用坐標表示軸對稱
1、點(x,y)關於x軸對稱的點的坐標為(x,-y);
2、點(x,y)關於y軸對稱的點的坐標為(-x,y);
3、點(x,y)關於原點對稱的點的坐標為(-x,-y)。
四、關於坐標軸夾角平分線對稱
點P(x,y)關於第一、三象限坐標軸夾角平分線y=x對稱的點的坐標是(y,x)
點P(x,y)關於第二、四象限坐標軸夾角平分線y=-x對稱的點的坐標是(-y,-x)
八年級數學知識點
1、全等三角形的對應邊、對應角相等
2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7、定理1在角的平分線上的點到這個角的兩邊的距離相等
8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9、角的平分線是到角的兩邊距離相等的所有點的集合
10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
11、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊
12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13、推論3等邊三角形的各角都相等,並且每一個角都等於60°
14、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
15、推論1三個角都相等的三角形是等邊三角形
16、推論2有一個角等於60°的等腰三角形是等邊三角形
17、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
18、直角三角形斜邊上的中線等於斜邊上的一半
19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
22、定理1關於某條直線對稱的兩個圖形是全等形
23、定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
24、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
25、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
26、勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
27、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那麼這個三角形是直角三角形
初二 數學學習方法 十大技巧
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖像的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。
人教版八年級數學知識點相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 八年級數學上冊知識點總結人教版
★ 人教版八年級數學上冊知識點整理
★ 八年級數學知識點整理歸納
★ 八年級數學知識點整理
★ 人教版八年級上冊數學課本知識點歸納
★ 初二數學知識點歸納上冊人教版
★ 人教版八年級數學上冊知識點
★ 人教版八年級上冊數學知識點總結
★ 新人教版八年級數學上冊知識點
Ⅳ 八年級上冊數學知識點總結
學習 八年級 數學知識點的來源於勤奮好學,只有好學者,才能在無邊的知識海洋里獵取到真智才學,為大家整理了八年級上冊數學知識點 總結 人教版,歡迎大家閱讀!
八年級上冊數學知識點總結人教版第11-12章
第十一章 全等三角形
知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本 方法 步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。
第十二章 軸對稱
知識概念
1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質: (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°,
7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。
八年級上冊數學知識點總結人教版第13-14章
第十三章 實數
1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
第十四章 一次函數
知識概念
1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。
3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。
4.已知兩點坐標求函數解析式:待定系數法
一次函數是初中學生學習函數的開始,也是今後學習 其它 函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。
八年級上冊數學知識點總結人教版第15章
第十五章 整式的乘除與分解因式
1.同底數冪的乘法法則: (m,n都是正數)
2.. 冪的乘方法則:(m,n都是正數)
3. 整式的乘法
(1) 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即,如,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的.
④運算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
八年級上冊數學知識點總結相關 文章 :
1. 人教版八年級數學上冊知識點總結
2. 初二數學上冊知識點總結
3. 人教版八年級數學上冊知識點總結
4. 八年級數學上冊知識點歸納
5. 八年級上冊數學知識點總結
6. 新人教版八年級數學上冊知識點歸納
7. 八年級上冊數學知識點總結與八年級數學學習技巧
8. 八年級數學知識點整理歸納
9. 八年級數學知識點總結
10. 2017人教版八年級上冊數學知識點總結