A. 小學四年級下冊數學復習資料
加法交換律:a+b=b+b
加法結合律:a+b+c=a+(b+c)
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
有的可能不是
第一單元乘法
1、三位數乘兩位數,所得的積不是四位數就是五位數。
2、三位數乘兩位數的計演算法則:先用兩位數的個位上的數與三位數的每一位相乘,乘得的積和個位對齊,再用兩位數十位上的數與三位數的每一位相乘,所得的積和十位對齊,最後把兩次乘得的積相加。
3、末尾有0的乘法計算方法:現把兩個乘數不是零的部分相乘,再看兩個乘數末尾一共有幾個零,就在積的末尾加幾個零。
第二單元升和毫升
1、1升(L)=1000毫升(ml 、mL)
2、從裡面量長、寬、高都是1分米的正方體容器正好是1升。1升水重1千克。生活中一杯水大約250毫升;一個高壓鍋大約盛水6升;一個家用水池大約盛水30升,一個臉盆大約盛水10升;一個浴缸大約盛水400升;一個熱水瓶的容量大約是2升,一個金魚缸大約有水30升,一瓶飲料大約是400毫升,一鍋水有5升,一湯勺水有10毫升。
3、一個健康的成年人血液總量約為4000----5000毫升。義務獻血者每次獻血量一般為200毫升。
4、1毫升大約等於20滴水。
第三單元三角形
1、圍成三角形的條件:較短兩條邊長度的和一定大於第三條邊。
2、從三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。
3、三角形具有穩定性(也就是當一個三角形的三條邊的長度確定後,這個三角形的形狀和大小都不會改變),生活中很多物體利用了這樣的特性。如:人字梁、斜拉橋、自行車車架。
4、三個角都是銳角的三角形是銳角三角形。(兩個內角的和大於第三個內角。)
5、有一個角是直角的三角形是直角三角形。(兩個內角的和等於第三個內角。兩個銳角的和是90度。兩條直角邊互為底和高。)
6、有一個角是鈍角的三角形是鈍角三角形。(兩個內角的和小於第三個內角。)
7、任意一個三角形至少有兩個銳角,都有三條高,三角形的內角和都是180度。(銳角三角形的三條高都在三角形內;直角三角形有兩條高落在兩條直角邊上;鈍角三角形有兩條高在三角形外)。
8、把一個三角形分成兩個直角三角形就是畫它的高。
9、兩條邊相等的三角形是等腰三角形,相等的兩條邊叫做腰,另外一條邊叫做底,兩條腰的夾角叫做頂角,底和腰的兩個夾角叫做底角,它的兩個底角也相等,是軸對稱圖形,有一條對稱軸(跟底邊高正好重合。)三條邊都
相等的三角形是等邊三角形,三條邊都相等,三個角也都
相等(每個角都是60°,所有等邊三角形的三個角都是60°。)
10、有一個角是直角的等腰三角形叫做等腰直角三角形,
它的底角等於45°,頂角等於90°。
10、求三角形的一個角=180°-另外兩角的和
11、等腰三角形的頂角=180°-底角×2=180°-底角-底角
12、等腰三角形的底角=(180°-頂角)÷2
13、一個三角形最大的角是60度,這個三角形一定是等邊三角形。
14、多邊形的內角和=180°×(n-2){n為邊數}
第四單元混合運算
1、混合運算中:先乘除後加減,既有小括弧,又有中括弧,要先算小括弧裡面的,再算中括弧里的。
第五單元平行四邊形和梯形
1、兩組對邊互相平行的四邊形叫平行四邊形,它的對邊平行且相等,對角相等。從一個頂點向對邊可以作兩種不同的高。
底和高一定要對應。一個平行四邊形有無數條高。
2、用兩塊完全一樣的三角尺可以拼成一個平行
四邊形。
3、平行四邊形容易變形(不穩定性)。生活中許
多物體都利用了這樣的特性。如:(電動伸縮門、鐵拉門、
伸降機)把平行四邊形拉成一個長方形,周長不變,面積變了。平行四邊形不是軸對稱圖形。
4、只有一組對邊平行的四邊形叫梯形。平
行的一組對邊較短的叫做梯形的上底,較長的
叫做梯形的下底,不平行的一組對邊叫做梯形
的腰,兩條平行線之間的距離叫做梯形的高
(無數條)。
5、兩條腰相等的梯形叫等腰梯形,它的兩個底角相等,是軸對稱圖形,有一條對稱軸。直角梯形有且只有兩個直角。
6、兩個完全一樣的梯形可以拼成一個平行四邊形。
7、正方形、長方形屬於特殊的平行四邊形。
第六單元找規律
1、搭配型規律:兩種事物的個數相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、媽媽、我排列照相,有幾種排法:2×3。
(2)5個球隊踢球,每兩隊踢一場,要踢多少場:4+3+2+1
第七單元運算律
1、乘法交換律:a×b=b×a
2、乘法結合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起來乘等於分別乘)
4、衍生:(a-b)×c=a×c-b×c
5、簡便運算典型例題:
102×35=(100+2)×35 36×101-36=36×(101-1)
35×98=35×(100-2)=35×100-35×2
第八單元對稱、平移和旋轉
1、畫圖形的另一半:(1)找對稱軸(2)找對應點(3)連成圖形。
2、正三邊形(等邊三角形)有3條對稱軸,正四邊形(正方形)有4條對稱軸,正五邊形有5條對稱軸,……正n變形有n條對稱軸。
3、圖形的平移,先畫平移方向,再把關鍵的點平移到指定的地方,最後連接成圖。(本學期學習兩次平移,如從左上平移到右下,先向右平移,再向下平移。)
4、圖形的旋轉,先找點,再把關鍵的邊旋轉到指定的地方,(注意方向和角度)再連線。(不管是平移還是旋轉,基本圖形不能改變。)
第九單元倍數和因數
1、4×3=12,或12÷3=4。那麼12是3和4的倍數,3和4是12的因數。(倍數和因數是相互存在的,不可以說12是倍數,或者說3是因數。只能說誰是誰的倍數,誰是誰的因數。)
2、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。如18的因數有:1、2、3、6、9、18。
3、一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。如:18的倍數有:18、36、54、72、90……(省略號非常重要)
4、一個數最大的因數等於這個數最小的倍數(都是它本身)。
5、是2的倍數的數叫做偶數。(個位是0、2、4、6、8的數)
6、不是2的倍數的數叫做奇數。(個位是1、3、5、7、9的數)
7、個位上是2、4、6、8、0的數是2的倍數,個位上是0或5的數是5的倍數。
8、既是2的倍數又是5的倍數個位上一定是0。(如:10、20、30、40……)
9、一個數各位上數字的和是3的倍數,這個數就是3的倍數。(如:453各位上數字的和是4+3+5=12,因為12是3的倍數,所以453也是3的倍數。)
10、一個數只有1和它本身兩個因數的數叫素數。(或質數)如:2、3、5、7、11、13、17、19…… 2是素數中唯一的偶數。(所以「所有的素數都是奇數」這一說法是錯誤的。)
11、一個數除了1和它本身兩個因數外,還有其它因數的數叫合數。如:4、6、8、9、10……
12、1既不是素數也不是合數,因為1的因數只有1個:1
13、哥德巴赫猜想:任何大於2的偶數都是兩個素數之和。20=3+17、40=11+2、8=3+5、10=3+7、12=5+7、14=3+11=7+7、30=23+7=13+17
14、100以內的素數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
15、三個連續自然數(3、4、5),三個連續奇數(3、5、7),三個連續偶數(4、6、8)的和都是3的倍數。
第十單元用計算器探索規律
1、積的變化規律:
①一個因數縮小幾倍,另一個因數擴大相同的倍數,積不變。
②一個因數縮小(或擴大幾倍),另一個因數不變,積也隨著縮小(或擴大)幾倍。
2、商的變化規律:
①被除數和除數同時擴大(或縮小)相同的倍數,(0除外),商不變。(余數會變)
②被除數擴大(或縮小)幾倍,除數不變,商也隨之擴大(或縮小)幾倍。
③被除數不變,除數縮小幾倍(0除外),商反而擴大幾倍。
第十二單元統計
1、折線統計圖不僅能夠看出數量的多少,而且能夠更清楚地看出數量的增減變化情況。折線統計圖的製作步驟:①定點 ②寫數據 ③連線 ④寫日期
第十三單元用字母表示數
1、用字母表示數的基本規律:
如果正方形的邊長用a表示,周長用C表示,面積用S表示。那麼:正方形的周長:C=a×4 正方形的面積:S=a×a。
a×4或4×a通常可以寫成4•a或4a;a×a可以寫成a•a,也可以寫成a2,讀作「a的平方」。如果是a與1相乘,就可以直接寫成a。
附:常用數量關系
正方形的面積=邊長×邊長 (S=a×a=a2)
正方形的周長=邊長×4 (C=a×4=4a)
長方形的面積=長×寬 (S=a×b=ab)
長方形的周長=(長+寬)×2 C=(a+b)×2
總價=單價×數量 單價=總價÷數量 數量=總價÷單價
路程=速度×時間 速度=路程÷時間 時間=路程÷速度
工總=工效×時間 工效=工總÷時間 時間=工總÷時間
房間面積=每塊地面磚面積×塊數
塊數=房間面積÷每塊面積
相遇的路程=(甲速度+乙速度)×相遇的時間=甲速度×時間+乙速度×時間
相距的路程=(甲速度—乙速度)×時間=甲速度×時間—乙
四 年 級 下 學 期 數 學 復 習 提 綱
領域 主要內容 重 點 難 點 相 關 概 念
數與代數 乘法 三位數乘兩位數的筆算
三步計算解決實際問題 三位數中間有0的筆算。 三位數乘兩位數,所得的積不是四位數就是五位數。
末尾有0的乘法計算方法:先把兩個乘數不是零的部分相乘,再看兩個乘數末尾一共有幾個零,就在積的末尾加幾個零。
混合運算 三步計算混合運算的運算順序,中括弧。 明確運算順序,提高計算正確率。 先乘除後加減;既有小括弧,又有中括弧,要先算小括弧裡面的,再算中括弧里的。
運算律 應用乘法分配律進行簡便運算 乘法交換律、結合律、分配律的簡便運算。 1、乘法交換律:a×b=b×a
2、乘法結合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起來乘等於分別乘)
4、拓展:(a-b)×c=a×c-b×c
5、簡便運算典型例題:102×35=(100+2)×35
36×101-36=36×(101-1) 35×98=35×(100-2)=35×100-35×2
用計算器
探索規律 積的變化規律
商的不變規律,用簡便方法計算被除數和除數末尾都有0的除法 在計算和解決實際問題中的應用。 1、積的變化規律:
一個因數縮小(或擴大幾倍),另一個因數不變,積也同時縮小(或擴大)相同的倍數。
2、商的變化規律:
被除數和除數同時擴大(或縮小)相同的倍數,(0除外),商不變。(余數會變)
倍數
因數 找10以內某個自然數的所有倍數(100以內)、找100以內某個自然數的所有因數
偶數和奇數,素數和合數的特徵,2、5和3的倍數的特徵 在掌握意義的基礎上綜合進行各類判斷,明白每類自然數的特徵。 1、4×3=12,或12÷3=4。那麼12是3和4的倍數,3和4是12的因數。(倍數和因數是相互存在的,不可以說12是倍數,或者說3是因數。只能說誰是誰的倍數,誰是誰的因數。)
2、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。
3、一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。
4、一個數最大的因數等於這個數最小的倍數(都是它本身)。
5、是2的倍數的數叫做偶數。(個位是0、2、4、6、8的數)
6、不是2的倍數的數叫做奇數。(個位是1、3、5、7、9的數)
7、個位上是2、4、6、8、0的數是2的倍數,個位上是0或5的數是5的倍數。
8、既是2的倍數又是5的倍數個位上一定是0。
9、一個數各位上數字的和是3的倍數,這個數就是3的倍數。(如:453各位上數字的和是4+3+5=12,因為12是3的倍數,所以453也是3的倍數。)
10、一個數只有1和它本身兩個因數的數叫素數(或質數)。如:2、3、5、7、11、13、17、19、23、29、31、37、41、47……
2是素數中唯一的偶數。(所以「所有的素數都是奇數」這句話是錯誤的。)
11、一個數除了1和它本身兩個因數外,還有其它因數的數叫合數。
12、1既不是素數也不是合數,因為1的因數只有1個:1
13、100以內的素數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
14、三個連續自然數(3、4、5),三個連續奇數(3、5、7),三個連續偶數(4、6、8)的和都是3的倍數。
找規律 進一步認識生活中的簡單搭配、簡單排列現象的規律。對幾種事物進行有序的搭配或排列。 運用規律解決一些簡單的實際問題。 1、搭配型規律:兩種事物的個數相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、媽媽、我排列照相,有幾種排法:2×3。
(2)5個球隊踢球,每兩隊踢一場,要踢多少場:4+3+2+1
用字母
表示數 用含有字母的式子表示簡單的數量、數量關系和公式,求含有字母的式子的值,化簡「ax+bx」的式子。 在具體的情境中用字母表示數量關系。 1、用字母表示數的基本規律:
如果正方形的邊長用a表示,周長用C表示,面積用S表示。那麼:正方形的周長:C=a×4 正方形的面積:S=a×a。
a×4或4×a通常可以寫成4·a或4a;a×a可以寫成a·a,也可以寫成a2,讀作「a的平方」。如果是a與1相乘,就可以直接寫成a。
2、用字母表示數量關系:小玲到商店買1枝鋼筆和4本筆記本,每枝鋼筆7元,每本筆記本a元。她一共付出(7+4a)元。
3、用數代替字母求出含有字母的式子的值。4、化簡含有字母的式子。
解決問題
的策略
用畫圖和列表的策略解決有關面積和行程的實際問題 運用畫圖解決面積的增減問題。
正確畫示意圖
合理列表
常用的數量關系:
正方形的面積=邊長×邊長 (S=a×a=a2)
正方形的周長=邊長×4 (C=a×4=4a)
長方形的面積=長×寬 (S=a×b=ab)
長方形的周長=(長+寬)×2 (C=(a+b)×2)
總價=單價×數量 單價=總價÷數量 數量=總價÷單價
路程=速度×時間 速度=路程÷時間 時間=路程÷速度
工總=工效×時間 工效=工總÷時間 時間=工總÷時間
房間面積=每塊地面磚面積×地磚的塊數
地磚的塊數=房間面積÷每塊地磚的面積
相遇的路程=(甲速度+乙速度)×相遇的時間=甲速度×時間+乙速度×時間
相距的路程=(甲速度—乙速度)×時間=甲速度×時間—乙速度×時間
空間與圖形 三角形 三角形的分類、內角和、求第三個角的度數,正確測量和畫出三角形的高 三角形兩邊之和大於第三邊的應用。 1、圍成三角形的條件:較短兩條邊長度的和一定大於第三條邊。
2、從三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。
3、三角形的分類:(按邊分類
三個角都是銳角的三角形是銳角三角形。(兩個內角的和大於第三個內角。)
有一個角是直角的三角形是直角三角形。(兩個內角的和等於第三個內角。兩個銳角的和是90度。兩條直角邊互為底和高。)
有一個角是鈍角的三角形是鈍角三角形。(兩個內角的和小於第三個內角。)
兩條邊相等的三角形是等腰三角形,相等的兩條邊叫做腰,另外一條邊叫做底,兩條腰的夾角叫做頂角,底和腰的兩個夾角叫做底角,它的兩個底角也相等,是軸對稱圖形,有一條對稱軸(跟底邊高正好重合。)
三條邊都相等的三角形是等邊三角形,三條邊都相等,三個角也都相等(每個角都是60°,所有等邊三角形的三個角都是60°。)
4、任意一個三角形至少有兩個銳角,都有三條高,三角形的內角和都是180度。
5、把一個三角形分成兩個直角三角形就是畫它的高。
6、有一個角是直角的等腰三角形叫做等腰直角三角形,它的底角等於45°,頂角等於90°。
7、求三角形的一個角=180°-另外兩角的和
8、等腰三角形的頂角=180°-底角×2=180°-底角-底角
9、等腰三角形的底角=(180°-頂角)÷2
10、一個三角形最大的角是60度,這個三角形一定是等邊三角形。
11、多邊形的內角和=180°×(n-2){n為邊的條數}
平行四邊形、梯形 平行四邊形、梯形的特徵,正確測量和畫出平行四邊形、梯形的高。 根據平行四邊形、梯形的底畫高。圖形之間的變換。
1、兩組對邊互相平行的四邊形叫平行四邊形,它的對邊平行且相等,對角相等。從一個頂點向對邊可以作兩種不同的高。底和高一定要對應。一個平行四邊形有無數條高。
2、用兩塊完全一樣的三角尺可以拼成一個平行四邊形。
3、平行四邊形容易變形(不穩定性)。生活中許多物體都利用了這樣的特性。如:(電動伸縮門、鐵拉門、伸降機)把平行四邊形拉成一個長方形,周長不變,面積變了。平行四邊形不是軸對稱圖形。
4、只有一組對邊平行的四邊形叫梯形。平
行的一組對邊較短的叫做梯形的上底,較長的
叫做梯形的下底,不平行的一組對邊叫做梯形
的腰,兩條平行線之間的距離叫做梯形的高
(無數條)。
5、兩條腰相等的梯形叫等腰梯形,它的兩個底角相等,是軸對稱圖形,有一條對稱軸。直角梯形有且只有兩個直角。
6、兩個完全一樣的梯形可以拼成一個平行四邊形。
7、正方形、長方形屬於特殊的平行四邊形。
對稱、平移
和旋轉 確定軸對稱圖形的對稱軸,畫簡單軸對稱圖形的對稱軸。根據對稱軸畫另一半
在方格紙上把簡單圖形連續平移兩次。將簡單圖形旋轉90度 畫出簡單圖形按逆時針、順時針旋轉90度後的圖形 1、畫圖形的另一半:(1)找對稱軸(2)找對應點(3)連成圖形。
2、正三邊形(等邊三角形)有3條對稱軸,正四邊形(正方形)有4條對稱軸,正五邊形有5條對稱軸,……正n變形有n條對稱軸。
3、圖形的平移,先畫平移方向,再把關鍵的點平移到指定的地方,最後連接成圖。(本學期學習兩次平移,如從左上平移到右下,先向右平移,再向下平移。)
4、圖形的旋轉,先找點,再把關鍵的邊旋轉到指定的地方,(注意方向和角度)再連線。(不管是平移還是旋轉,基本圖形不能改變。)
升和毫升 升和毫升之間的進率。升和毫升在生活中的應用。 升和毫升在生活中的應用 1、1升(L)=1000毫升(ml 、mL)
2、從裡面量長、寬、高都是1分米的正方體容器正好是1升。1升水重1千克。生活中一杯水大約250毫升;一個高壓鍋大約盛水6升;一個家用水池大約盛水30升,一個臉盆大約盛水10升;一個浴缸大約盛水400升;一個熱水瓶的容量大約是2升,一個金魚缸大約有水30升,一瓶飲料大約是400毫升,一鍋水有5升,一湯勺水有10毫升。
3、一個健康的成年人血液總量約為4000----5000毫升。義務獻血者每次獻血量一般為200毫升。
4、1毫升大約等於20滴水。
統計 統計 畫折線統計圖,對折線統計圖的數據進行分析。根據數據特點和實際需要選擇條形統計圖.或折線統計圖。 對折線統計圖的數據進行分析。 折線統計圖不僅能夠看出數量的多少,而且能夠更清楚地看出數量的增減變化情況。折線統計圖的製作步驟:①定點 ②寫數據 ③連線 ④寫日期
回答者: 61084773400 | 一級 | 2011-6-19 17:38
一、運算順序:
在沒有括弧的算式里如果只有加減法或只有乘除法有依次計算。在沒有括弧的算式里,有加減法又有乘除法,要先乘除法,後算加減法。算式里有括弧時,要先算括弧裡面的。加減乘除法統稱四則運算。一個數加0得原數任何一個數乘0得00不能做除數,0除以一個非0的數等於0。0除0得不到固定的商。5除0得不到商
二、位置與方向
1.根據方向和距離確定或者繪制物體的具體點。(比例尺、角的畫法和度量)
2.位置間的相對性。會描述兩個物體間相互位置關系。(觀測點的確定)
B在A的東偏北30度2000米處;
A在B的西偏南30度200米處。
3.簡單路線圖的繪制。
三、運算定律及簡便運算:
1.加法運算定律:
加法交換律:兩個數相加,交換加數得位置,和不變。a+b=b+a
加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加 再加上第一個數 ,和不變。(a+b)+c=a+(b+c) 加法這兩個定律往往結合在一起使用。如:165+93+35=93+(165+35) 依據是什麼?
. 2、 連減的性質:一個數連續減去兩個數,等於這個數減去那兩個數的和 。 a-b-c=a-(b+c)
3、乘法運算定律:
乘法交換律: 兩個數相乘,交換因數的位置,積不變。bXa=aXb
乘法結合律: 三個數相乘,可以先把前兩個數相乘,再乘第三個數 ,也可以先把後兩個數相乘,再乘以第一個數,積不變。 (axb)xc=ax(bxc) 乘法這兩個定律往往結合在一起使用。如:(axb)xc=ax(bxc)。如:125
乘法分配率:兩個數的和與一個數相乘,可以先把這兩個數分別與這兩個數相乘,再把積相加。(a+b)xc=axc+bxc
4.連除的性質:一個數連續除以兩個數,等於除以這兩個數的積。 a除b除c=a除{b乘c}
a+b=b+a {a+b}+c=a+{b+c} 165+93+35=93+{165+35} {a+b}Xc=aXc+bXc 分母是101001000........可用小數表示
小數的單位是十分之_百分之一.千分之一
每相鄰的兩個計數單位的進率是+整數整讀.小數依次讀出每1個整數整寫小數依次目小數末尾瞼0可去掉
小數擴大十倍,有向右移動一位擴大100倍向右移動兩位一千倍向右移動一位。。。
小數向左移一位縮小+倍向左移動兩位縮小一百倍向左移動三位縮小一千倍........
保留-位小數精確到+分位2位小數精確到百分位3位小數精確到千分位.....。
三條邊圍成的圖形叫三角形
三角的1個角到它對邊作-條直線這條直線叫三角形的高對邊叫三角形的底
特性穩定任意兩大於笫三邊
角的分類;大小分銳角直角鈍角長短分三邊不等等腰三角形總等180度兩個三角形能拼平行四邊形
把小數點對齊計算叫小數加減法在數據描出各點用線連起來間隔數=總長除間隔長
兩端教植棵數等於間隔+1隻植一端棵數=間隔
都不植棵數=間隔--
封閉棵數=間隔
B. 誰能把小學一至六年級數學知識點詳細的列出來
小學數學知識點總結
一年級上冊
1、 數一數(1~10)
2、 比一比(多少、長短、高矮、)
3、 1~5的認識和加減法(比大小、第幾、幾和幾、加法、減法、0的認識)
4、 認識物體和圖形(長方體、正方體、圓柱、球、長方形、正方形、三角形、圓)
5、 分類
6、 6~10的認識和加減法(連加、連減、加減混合)
7、 11~20個數的認識(數位的認識)
8、 認識鍾表(整時、半時)
9、 20以內的進位加法 (湊十、9、8、7、6加幾,5、4、3、2加幾)
10、 總復習
一年級下冊
1、 位置(上下、左右、前後、位置)
2、 20以內的退位加法
3、 圖形的拼組
4、 100以內數的認識(數數、數的組成,讀數、寫數,數的順序、比較大小、整十數加一位數及相應的減法)
5、 認識人民幣(簡單的計算)
6、 100以內的加法和減法(一)(1、整十數加減整十數2、兩位數加一位數和整十數3、兩位數減一位數和整十數)
7、 認識時間
8、 找規律
9、 統計(條形統計圖)
10、 總復習
二年級上冊
1、 長度單位
2、 100以內的加法和減法(二)(1、兩位數加兩位數、不進位加、進位加2、兩位數減兩位數、不退位減、退位減3、連加、連減和加減混合、加減混合、加減估算)
3、 角的初步認識
4、 表內乘法(一)(1、乘法的初步認識2、2~6的乘法口訣)
5、 觀察物體
6、 表內乘法(二)(7、8、9的乘法口訣)
7、 統計
8、 數學廣角
9、 總復習
二年級下冊
1、 解決問題
2、 表內除法(一)(1、除法的初步認識、平均分、除法2、用2~6的乘法口訣求商)
3、 圖形與轉換(銳角和鈍角、平移和旋轉)
4、 表內除法(二)(用7、8、9的乘法口訣求商、解決問題)
5、 萬以內數的認識(1000以內數的認識、10000以內數的認識、整百整千數的加減法)
6、 克和千克
7、 萬以內的加法和減法(一)
8、 統計
9、 找規律
10、 總復習
三年級上冊
1、 測量(毫米、分米的認識,千米的認識,噸的認識)
2、 萬以內的加法和減法(二)(1、加法,2、減法3、加減法的驗算)
3、 四邊形(四邊形、平行四邊形、周長、長方形和正方形的周長、估計)
4、 有餘數的除法
5、 時、分、秒(秒的認識、時間的計算)
6、 多位數乘一位數(1、口算乘法,2、筆算乘法)
7、 分數的初步認識(1、分數的初步認識<幾分之一、幾分之幾>,2、分數的簡單計算)
8、 可能性
9、 數學廣角
10、 總復習
三年級下冊
1、 位置和方向
2、 除數是一位數的除法(1、口算除法,2、筆算乘法)
3、 統計(1、簡單的數據分析,2、平均數)
4、 年、月、日(年月日、24小時計時法)
5、 兩位數乘兩位數(1、口算乘法,2、筆算乘法)
6、 面積(面積和面積單位、長方形和正方形面積的計算、面積單位間的進率、公頃與平方千米)
7、 小數的初步認識(認識小數、簡單的小數加減法)
8、 解決問題
9、 數學廣角
10、 總復習
四年級上冊
1、 大數的認識(億以內數的認識、數的產生、億以上數的認識、計算工具的認識、用計算器計算)
2、 角的度量(直線、射線和角,角的度量、角的分類、畫角)
3、 三位數乘兩位數(1、口算乘法,2筆算乘法)
4、 平行四邊形和梯形(垂直與平行、平行四邊形與梯形)
5、 除數是兩位數的除法(1、口算除法,2、筆算除法)
6、 統計
7、 數學廣角(烙餅問題)
8、 總復習
四年級下冊
1、 四則運算
2、 位置和方向
3、 運算定律與簡便計算(1、加法運算定律,2、乘法運算定律,3、簡便計算)
4、 小數的意義和性質(1、小數的意義和讀寫法<小數的產生和意義、小數的讀法和寫法>,2、小數的性質和大小比較<小數的大小比較、小數點移動>,3、生活中的小數,4求一個小數的近似數)
5、 三角形(三角形的特性、三角形的分類、三角形的內角和、圖形的拼組)
6、 小數的加法和減法
7、 統計
8、 數學廣角
9、 總復習
五年級上冊
1、 小數乘法(小數乘整數、小數乘小數、積的近似數,連乘、乘加、乘減,整數乘法定律推廣到小數)
2、 小數除法(小數除以整數、一個數除以小數、商的近似數、循環小數、用計算器探索規律、解決問題)
3、 觀察物體
4、 簡易方程(1、用字母表示數,1、解建議方程<方程的意義、解方程、稍復雜的方程>)
5、 多邊形的面積(平行四邊形的面積、三角形的面積、梯形的面積、組合圖形的面積)
6、 統計與可能性
7、 數學廣角
8、 總復習
五年級下冊
1、 圖形的變換(軸對稱、旋轉、欣賞設計)
2、 因數與倍數(1、因數和倍數,2、2、5、3倍數的特徵,指數和和數)
3、 長方體和正方體(1、長方體和正方體的認識,2、長方體和正方體的表面積,3、長方體和正方體的體積、體積單位間的進率、容積和容積單位)
4、 分數的意義和性質(1、分數的意義<分數的產生\分數的意義\分數與除法>,2、真分數和假分數,3、分數的基本性質,4、約分<最大公因數、約分>,5、通分<最小公倍數、通分>,6、分數和小數的互化)
5、 分數的加法和減法(1、同分母分數加減法,2、異分母分數加減法,3、分數加減混合運算)
6、 統計
7、 數學廣角
8、 總復習
六年級上冊
1、 位置
2、 分數的乘法(1、分數乘法,2、解決問題,3、倒數的認識)
3、 分數的除法(1、分數的除法,2、解決問題,3、比和比的應用<比的意義、比的基本性質、比的應用>)
4、 圓(1、認識圓,2、圓的周長,3、圓的面積)
5、 百分數(1、百分數的意義和寫法,2、百分數和分數、小數的互化,3、用百分數解決問題、折扣、納稅、合理存款)
6、 統計
7、 數學廣角
8、 總復習
六年級下冊
1、 負數
2、 圓柱與圓錐(1、圓柱<圓柱的認識、圓柱的表面積、圓柱的體積>,2、圓錐<圓錐的認識、圓錐的體積>)
3、 比例(1、比例的意義和基本性質<比例的意義、比例的基本性質、解比例>,2、正比例和反比例的意義<成正比例的量、成反比例的量>3、比例的應用<比例尺、圖形的放大與縮小、用比例解決問題>)
4、 統計
5、 數學廣角
6、 整理和復習(1、數和代數、數的運算、式與方程、常見的量、比和比例,2、空間與圖形<圖形的認識和測量、圖形與變換、圖形與位置>、3、統計與可能性,4、綜合應用)
C. 四年級數學下冊知識點
四年級數學下冊知識點1
第一單元知識點(四則運算)
1. 在沒有括弧的算式里,如果只有加、減法或者只有乘除法,都要從左往右按順序計算。(這是同級運算)
2. 在沒有括弧的算式里,有乘、除法和加減法,要先算乘除法,在算加減法。(這是兩級運算)
3. 算式里有括弧,先算括弧裡面的,在算括弧外面的。
4. 加法、減法、乘法和除法統稱四則運算。
5. 一個數加上0還得原數,一個數減去0也得原數。
6. 被減數等於減數,差是0。
7. 一個數和零相乘,仍得0。
8. 0除以一個非0的數,還得0。
9. 0不能作除數。
10. 在解決問題時,如果列綜合算式,必須用脫式計算。
11. 任何數除以0都得0。(×)因為0不能做除數。
第二單元知識點(觀察物體)
1. 如何確定物體所在的位置?
(1)明確方向。
(2)明確距離。
2.根據方向和距離來確定物體的位置。
3.在生活中一般先說物體所在方向離的近(夾角較小)的方位。
4.平面圖形的一般畫法:
(1)先確定某建築物的方向。
(2)再確定角度。(測量角度時,哪個方位在前,0刻度線就對准誰。)
(3)最後確定距離。
5.兩個城市的位置具有相對性,方向相對,角度和距離不發生改變。例如:甲地在乙地的南偏東30度500米處,則乙地在甲地的北偏西30度500米處。
第三單元知識點(運算定律)
1.兩個數相加,兩個加數交換位置,和不變。這叫做加法交換律。
用字母表示為:a+b=b+a
2.三個數相加,先把前兩個數相加,再加第三個數,或者先把後兩個數相加,再加第一個數,和不變。這叫做加法結合律。用字母表示為:(a+b)+c=a+(b+c)
3.兩個數相乘,交換兩個因數的位置,積不變。這叫做乘法交換律。
用字母表示為:a×b=b×a
4.三個數相乘,先讓前兩個數相乘,再乘第三個數,或者先讓後兩個數相乘,再乘第一個數,積不變。這叫做乘法結合律。
用字母表示為:(a×b) ×c=a×(b×c)
5.兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。這叫做乘法分配律。用字母表示為:(a+b)×c=a×c+b×c
6. 類似於乘法分配律的簡便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.從一個數里連續減去兩個數,等於從這個數里減去另兩個數的和。這叫做減法的運算性質。用字母表示為:a-b-c=a-(b+c)
8.在一個帶有括弧的算式中,括弧前面是「+」,去掉括弧後,括弧裡面的運算符號不發生改變。用字母表示為:a+(b+c)=a+b+c a+(b-c)=a+b-c
括弧前面是「-」,去掉括弧後,括弧裡面的運算符號發生了變化,「+」變「-」, 「-」變「+」。 用字母表示為:a-(b+c)=a-b-c a-(b-c)=a-b+c
9.一個數連續除以兩個數,等於這個數除以另兩個數的積。這時除法的運算性質。用字母表示為:a÷b÷c=a÷(b×c)
10. 在一個帶有括弧的算式中,括弧前面是「×」,去掉括弧後,括弧裡面的運算符號不發生改變。用字母表示為:
a×(b×c)=a×b×c a×(b÷c)=a×b÷c
括弧前面是「÷」,去掉括弧後,括弧裡面的運算符號發生了改變。用字母表示為:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
12. 另兩種簡便方法:
(1) 把一個因數改寫成兩個一位數相乘的形式。
(2) 把一個因數改寫成兩個數相除的形式,然後變成乘除混和運算。
第四單元知識點(小數的意義和性質)
1. 在進行測量和計算時,往往不能正好得到整數的結果,這時就需要用小數來表示,這樣就產生了小數。
2. 分母是10、100、1000……的分數可以仿照整數的寫法寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數,叫做小數。
3. 小數的計數單位是十分之一、百分之一、千分之一……分別寫作0.1、0.01、0.001……每相鄰兩個計數單位間的進率是10。
4.一位小數的計數單位是十分之一(寫作0.1),兩位小數的計數單位是百分之一(寫作0.01),,三位小數的計數單位是千分之一(寫作0.001)。
5.十分之幾用一位小數表示,百分之幾用兩位小數表示,千分之幾用三位小數表示……
6. 小數的讀法:
(1)先讀整數部分,再讀點,最後讀小數部分。
(2)整數部分按照整數的讀法來讀,小數部分要依次讀出每個數字。
(3)整數部分是0的小數,整數部分就讀「零」,小數部分有幾個0,就讀幾個零。
7.小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
8.利用小數的性質進行小數的化簡和改寫。
例如:0.70=0.7 105.0900=105.09(這是小數的化簡)
又如:不改變數的大小,把下面各數寫成三位小數
0.2=0.200 4.08=4.080 3=3.000(這是改寫小數)
9.如何比較小數的大小?
先比較整數部分,整數部分相同,比較十分位上的數;十分位上的數相同,比較百分位上的數;百分位上的數相同,比較千分位上的數……
10.小數點移動的規律:
(1)小數點向右
移動一位,小數就擴大到原數的10倍;
移動兩位,小數就擴大到原數的100倍;
移動三位,小數就擴大到原數的1000倍;
……
(2)小數點向左
移動一位,小數就縮小到原數的1/10;
移動兩位,小數就縮小到原數的1/100;
移動三位,小數就縮小到原數的1/1000;
……
11.把量和單位名稱合起來的數叫名數。
12.單名數:只帶一個單位名稱的名數。例如:4千米、0.8噸、15.38元……
13.復名數:帶有兩個或兩個以上的單位名稱的名數。例如:
20元5角8分 5噸600克……
14.名數改寫的規律:先找進率;再看是把高級單位改寫成低級單位,還是是把低級單位改寫成高級單位;最後移動小數點。口訣如下:
(1)高到低,乘進率,小數點,向右移,移幾位,看進率。
例如:1.32千克=(1320 )克 (58 )厘米=0.58米
1千克=1000克 1米=100厘米
高→低 低←高
1.32×1000=1320克 0.58×100=58厘米
(2)低到高,用除法,小數點,向左移,移幾位,看進率。
例如:
7450米=(7.45 )千米 (9.02)噸=9020千克
1千米=1000米 1噸=1000千克
低→高 高←低
7450÷1000=7.45千米 9020÷1000=9.02噸
15.求小數的近似數,可用「四捨五入」法。
16.在表示近似數時,小數末尾的0不能去掉。
17.求小數的近似數的方法:
求近似數時,保留整數,表示精確到個位,看十分位上的數;保留一位小數,表示精確到十分位,看百分位上的數;保留兩位小數,表示精確到百分位,看百分位上的數;保留三位小數,表示精確到千分位,看萬分位上的數……。然後根據「四捨五入」法進行取捨。
例如:9.953≈ 10 (保留整數)
9.953≈10.0 (保留一位小數)
9.953≈9.95 (保留兩位小數)
23.4395≈23.440 (保留三位小數)
18. 1.0比1精確。保留的位數越多,數就越精確。
19.如何把一個數改寫成以萬為單位的數?
方法一:把已知數的小數點向左移動四位,進行化簡後,在數的末尾加寫一個萬字。
方法二:(1)先找萬位;(2)在萬位後面點「.」;(3)根據實際情況進行化簡;(4)在數的末尾加寫一個萬字;(5)如果有單位名稱一定照抄過來。
20.如何把一個數改寫成以億為單位的數?
方法一:把已知數的小數點向左移動八位,進行化簡後,在數的末尾加寫一個億字。
方法二:(1)先找億位;(2)在億位後面點「.」;(3)根據實際情況進行化簡;(4)在數的末尾加寫一個億字;(5)如果有單位名稱一定照抄過來。
註:對於改寫的方法,同學們靈活掌握。
21.下列各數中的「6」分別表示什麼?
6.32(表示6個一) 0.6(表示6個十分之一) 0.86(表示6個百分之一)
62.32(表示6個十) 3.416(表示千分之一)
22.三位小數一定小於四位小數。(×)例如:1.003﹥0.5678
23.去掉小數點後面的0,小數的大小不變。(×)
應該是去掉小數末尾的零,小數的大小不變。
24.小數就是比1小的數。(×)例如:10.1﹥1
25.近似數是0.5的兩位小數有5個。(×)
近似數是0.5的兩位小數有9個,分別是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的數,再利用「四捨五入」 法。)
26.近似數4.0與精確數4.0末尾的0都可以去掉。(×)
在表示近似數時,小數末尾的0不能去掉。
27.小數的位數越多,數就越大。(×)
28.小數都比自然數小。(×)
29.整數都大於小數。(×)
30.0.4與0.6之間的小數只有一個。(×)因為0.4與0.6之間的小數有無數個。31.近似數是6.50的三位小數中,最大是(6.504),最小是(6.495)。
方法:求最大近似數時,一定比6.50大,千分位上的數必須「舍」,也就是千分位上只能是1、2、3、4,其中最大的數是4,所以近似數是6.50的三位小數中,最大是6.504。
求最小的近似數時,一定比6.50小一個計數單位(本題少一個0.01,也就是6.49),這時千分位上的數必須「入」, 千分位上只能是5、6、7、8、9,其中最小的'數是5,所以近似數是6.50的三位小數中,最小是6.495。
四年級數學下冊知識點2
運算定律及簡便運算
一、加法運算定律:
1、加法交換律:兩個數相加,交換加數的位置,和不變。a+b=b+a
2、加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再加上第一個數,和不變。(a+b)+c=a+b+c
加法的這兩個定律往往結合起來一起使用。
如:165+93+35=93+(165+35)依據是什麼?
3、連減的性質:一個數連續減去兩個數,等於這個數減去那兩個數的和。a-b-c=a-b+c
二、乘法運算定律:
1、乘法交換律:兩個數相乘,交換因數的位置,積不變。a×b=b×a
2、乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘以第三個數,也可以先把後兩個數相乘,再乘以第一個數,積不變。(a×b)×c=a×b×c
乘法的這兩個定律往往結合起來一起使用。如:125×78×8的簡算
3、乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這個數相乘,再把積相加。
(a+b)×c=a×c+b×c a-b×c=a×c-b×c
雞兔問題公式
(1)已知總頭數和總腳數,求雞、兔各多少:
(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;
總頭數-兔數=雞數。
或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;
總頭數-雞數=兔數。
例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二(4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答略)
(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式
(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數
或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。
(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數。
或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。
例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」
解一(4×1000-3525)÷(4+15)
=475÷19=25(個)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;
〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。
例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
雞兔同籠
1、雞兔同籠屬於假設問題,假設的和最後結果相反。
2、「雞兔同籠」問題的解題方法
假設法:
①假如都是兔
②假如都是雞
③古人「抬腳法」:
解答思路:
假如每隻雞、每隻兔各抬起一半的腳,則每隻雞就變成了「獨腳雞」,每隻兔就變成了「雙腳兔」。這樣,雞和兔的腳的總數就少了一半。這種思維方法叫化歸法。
3、公式:
雞兔總腳數÷2-雞兔總數=兔的只數;
雞兔總數-兔的只數=雞的只數。
四則運算
1、加法、減法、乘法和除法統稱四則運算。
2、在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
3、在沒有括弧的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。
4、算式有括弧,要先算括弧裡面的,再算括弧外面的;括弧裡面的算式計算順序遵循以上的計算順序。
5、先乘除,後加減,有括弧,提前算
關於「0」的運算
1、「0」不能做除數; 字母表示:a÷0錯誤
2、一個數加上0還得原數; 字母表示:a+0=a
3、一個數減去0還得原數; 字母表示:a-0=a
4、被減數等於減數,差是0; 字母表示:a-a=0
5、一個數和0相乘,仍得0; 字母表示:a×0=0
6、0除以任何非0的數,還得0; 字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商; 5÷0得不到商.(無意義)
D. 小學一至六年級數學知識點歸納(大全)
小學一至六年級數學知識點歸納
一、數與代數
1. 數的認識:包括整數、小數、分數的認識及其性質。
2. 數的運算:加減乘除法的運算規則及混合運算,包括簡便運算和實際應用題。
3. 代數初步認識:用字母表示數,簡單的一元一次方程求解。
二、空間與幾何
1. 圖形的認識:點、線、面、三角形、四邊形、圓等圖形的性質及分類。
2. 圖形的測量:周長、面積的計算方法,體積與容積的概念及計算。
3. 圖形的運動與位置:平移、旋轉、對稱等圖形的變換,方位與距離的確定。
三、統計與概率
1. 統計圖表:認識各種統計圖表,如條形統計圖、折線統計圖等。
2. 統計觀念的應用:收集數據,描述數據,分析數據的簡單方法。
3. 概率初步認識:簡單事件發生的可能性及概率計算。
四、實踐與綜合運用
1. 數學廣角:生活中的數學問題解決,如年齡問題、植樹問題等。
2. 數學趣味知識:趣味數學題目,數學小故事等。
詳細解釋:
一、數與代數部分是數學的基礎,涉及到數的認識以及運算規則,為後續學習代數打下基礎。代數初步認識部分則是開始接觸用字母代替數的概念,以及簡單方程求解的方法。
二、空間與幾何部分主要是培養學生對於圖形的認識和測量能力,以及圖形的運動與位置的理解。這部分內容對於培養學生的空間觀念非常重要。
三、統計與概率部分則是引導學生開始接觸數據的收集、描述和分析,以及事件發生的可能性。這對於培養學生的數據分析能力非常有幫助。
四、實踐與綜合運用部分則是將數學知識應用到實際生活中,通過解決生活中的數學問題,增強學生對數學的興趣和應用能力。此外,還包含一些趣味數學知識和故事,以提高學生的數學素養。
以上就是小學一至六年級數學的主要知識點歸納,每個知識點都是數學學習的基礎,需要學生牢固掌握。
E. 四年級下冊,第二單元數學知識樹怎麼做
小學數學教學知識樹通常含:(1)數與代數(2)空間圖形(3)統計概率(4)實踐與綜合運用這四大塊再具體到哪幾個單元,什麼專題。這就是整冊教材的知識樹。