❶ 初三數學上冊課本知識點總結
課堂臨時報佛腳,不如 課前預習 好。其實任何學科都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。
初三數學課本知識點
數學—函數
1、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點p(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限於與x軸有交點a(x?,0)和b(x?,0)的拋物線]
註:在3種形式的互相轉化中,有如下關系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
2、二次函數的圖像
在數學平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。
iv.拋物線的性質
1.數學拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
數學對稱軸與拋物線唯一的交點為拋物線的頂點p。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點p,坐標為:p(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,p在y軸上;當δ=b^2-4ac=0時,p在x軸上。
3.數學二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
初三新學期數學知識點
一元一次方程:
①在一個方程中,只含有一個未知數,並且未知數的指數是
1、這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:
去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2、不等式與不等式組
不等式:
①用符號」=「號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
一元一次不等式組:
①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
九年級數學 知識點歸納
一、平行線分線段成比例定理及其推論:
1.定理:三條平行線截兩條直線,所得的對應線段成比例。
2.推論:平行於三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段成比例。
3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條線段平行於三角形的第三邊。
二、相似預備定理:
平行於三角形的一邊,並且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對應成比例。
三、相似三角形:
1.定義:對應角相等,對應邊成比例的三角形叫做相似三角形。
2.性質:(1)相似三角形的對應角相等;
(2)相似三角形的對應線段(邊、高、中線、角平分線)成比例;
(3)相似三角形的周長比等於相似比,面積比等於相似比的平方。
說明:①等高三角形的面積比等於底之比,等底三角形的面積比等於高之比;②要注意兩個圖形元素的對應。
3.判定定理:
(1)兩角對應相等,兩三角形相似;
(2)兩邊對應成比例,且夾角相等,兩三角形相似;
(3)三邊對應成比例,兩三角形相似;
(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角對應成比例,那麼這兩個直角三角形相似。
初三數學復習知識點
有理數、整式的加減、一元一次方程、圖形的初步認識。
(1)有理數:是初中數學的基礎內容,中考試題中分值約為3-6分,多以選擇題,填空題,計算題的形式出現,難易度屬於簡單。
【考察內容】復數以及混合運算(期中、期末必考計算)數軸、相反數、絕對值和倒數(選擇、填空)。
(2)整式的加減:中考試題中分值約為4分,題型以選擇和填空題為主,難易度屬於易。
【考察內容】
①整式的概念和簡單的運算,主要是同類項的概念和化簡求值
②完全平方公式,平方差公式的幾何意義
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一學習重點內容,主要學習內容有(歸納、 總結 、延伸)應用題思維、步驟、文字題,根據已知條件求未知。中考分值約為1-3分,題型主要以選擇和填空題為主,極少出現簡答題,難易度為易。
【考察內容】
①方程及方程解的概念
②根據題意列一元一次方程
③解一元一次方程。題型:追擊、相遇、時間速度路程的關系、打折銷售、利潤公式。
(4)幾何:角和線段,為下冊學三角形打基礎
相交線和平行線、實數、平面直角坐標系、二元一次方程組、不等式和不等式組和資料庫的收集整理與描述。
(1)相交線和平行線:相交線和平行線是歷年中考中常見的考點。通常以填空,選擇題形式出現。分值為3-4分,難易度為易。
【考察內容】
①平行線的性質(公理)
②平行線的判別方法
③構造平行線,利用平行線的性質解決問題。
(2)平面直角坐標系:中考試題中分值約為3-4分,題型以選擇,填空為主,難易度屬於易。
【考察內容】
①考察平面直角坐標系內點的坐標特徵
②函數自變數的取值范圍和球函數的值
③考察結合圖像對簡單實際問題中的函數關系進行分析。
(3)二元一次方程組:中考分值約為3-6分,題型主要以選擇,解答為主,難易度為中。
【考察內容】
①方程組的解法,解方程組
②根據題意列二元一次方程組解經濟問題。
(4)不等式和不等式組:中考試題中分值約為3-8分,選擇,填空,解答題為主。
【考察內容:】
①一元一次不等式(組)的解法,不等式(組)解集的數軸表示,不等式(組)的整數解等,題型以選擇,填空為主。
②列不等式(組)解決經濟問題,調配問題等,主要以解答題為主。
③留意不等式(組)和函數圖像的結合問題。
(5)資料庫的收集整理與描述
分值一般在6-10分,題型近幾年主要以解答題出現,偶爾以選擇填空出現。難易度為中。
初三數學上冊課本知識點總結相關 文章 :
★ 九年級數學上冊重要知識點總結
★ 初三上冊數學知識點總結
★ 初三數學知識點上冊總結歸納
★ 九年級上冊數學知識點歸納整理
★ 初三上冊數學知識點歸納
★ 九年級上冊數學知識點歸納
★ 初中數學必備知識點總結初三數學上冊一二章知識點
★ 初三數學上學期學習總結
★ 九年級上冊數學知識點
★ 初三上冊數學知識點
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❷ 九年級上冊數學主要內容
九年級上冊數學期末基礎知識復習
二次根式
知識點1.二次根式 重點:掌握二次根式的概念。 難點:二次根式有意義的條件
式子
(a≥0)叫做二次根式.
知識點 2.最簡二次根式
重點:掌握最簡二次根式的條件[來源:學.難點:正確分清是否為最簡二次根式
同時滿足:①被開方數的因數是整數,因式是整式(分母中不含根號);②被開方數中含能開得盡方的因數或因式.這樣的二次根式叫做最簡二次根式.
知識點3.同類二次根式
重點:掌握同類二次根式的概念 難點:正確分清是否為同類二次根式
幾個二次根式化成最簡二次根式後,如果被開方數相同,這幾個二次根式就叫同類二次根式.
知識點4.二次根式的性質
重點:掌握二次根式的性質 難點:理解和熟練運用二次根式的性質
①(
)2=a(a≥0);
②
=│a│=
;
知識點5.分母有理化及有理化因式
重點:掌握分母有理化及有理化因式的概念
難點:熟練進行分母有理化,求有理化因式
把分母中的根號化去,叫做分母有理化;兩個含有二次根式的代數式相乘,若它們的積不含二次根式,則稱這兩個代數式互為有理化因式.
例觀察下列分母有理化的計算:
,從計算結果中找出規律,並利用這一規律計算:
=_____________
解題思路:
知識點6.二次根式的運算
重點:掌握二次根式的運演算法則 難點:熟練進行二次根式的運算
(1)因式的外移和內移:如果被開方數中有的因式能夠開得盡方,那麼,就可以用它的算術根代替而移到根號外面;如果被開方數是代數和的形式,那麼先解因式,變形為積的形式,再移因式到根號外面,反之也可以將根號外面的正因式平方後移到根號裡面.
(2)二次根式的加減法:先把二次根式化成最簡二次根式再合並同類二次根式.
(3)二次根式的乘除法:二次根式相乘(除),將被開方數相乘(除),所得的積(商)仍作積(商)的被開方數並將運算結果化為最簡二次根式.
=
·
(a≥0,b≥0);
(b≥0,a>0).
(4)有理數的加法交換律、結合律,乘法交換律及結合律,乘法對加法的分配律以及多項式的乘法公式,都適用於二次根式的運算.
最新考題中考要求及命題趨勢1、掌握二次根式的有關知識,包括概念,性質、運算等;2、熟練地進行二次根式的運算
一 元 二 次 方 程
一、知識結構:
一元二次方程:概念、解與解法、實際應用、根與系數的關系。
二、考點精析
考點一、概念(1)定義:①只含有一個未知數,並且②未知數的最高次數是2,這樣的③整式方程就是一元二次方程。
(2)一般表達式:
⑶難點:如何理解 「未知數的最高次數是2」:①該項系數不為「0」;②未知數指數為「2」;
③若存在某項指數為待定系數,或系數也有待定,則需建立方程或不等式加以討論。
例2、方程
是關於x的一元二次方程,則m的值為 。
考點二、方程的解
⑴概念:使方程兩邊相等的未知數的值,就是方程的解。 ⑵應用:利用根的概念求代數式的值;
典型例題:例1、已知
的值為2,則
的值為
。
考點三、解法
⑴方法:①直接開方法;②因式分解法;③配方法;④公式法 ⑵關鍵點:降次
類型一、直接開方法:
※※對於
,
等形式均適用直接開方法
典型例題:例1、解方程:
=0;
例2、若
,則x的值為 。
類型二、因式分解法:
※方程特點: 左邊可以分解為兩個一次因式的積,右邊為「0」,
※方程形式:如
,
,
典型例題:例1、
的根為( )A .
B .
C .
D.
例2、若
,則4x+y的值為 。
類型三、配方法
※在解方程中,多不用配方法;但常利用配方思想求解代數式的值或極值之類的問題。
典型例題:試用配方法說明
的值恆大於0。
類型四、公式法⑴條件:
⑵公式:
,
典型例題: 例1、選擇適當方法解下列方程:
⑴
⑵
⑶
類型五、 「降次思想」的應用
⑴求代數式的值; ⑵解二元二次方程組。
典型例題:已知
,求代數式
的值。
考點四、根的判別式
根的判別式的作用:①定根的個數;②求待定系數的值;③應用於其它。
典型例題:例1、若關於
的方程
有兩個不相等的實數根,則k的取值范圍是 。
考點五、方程類問題中的「分類討論」
典型例題: 例1、討論關於x的方程
根的情況。
考點六、應用解答題
⑴「碰面」問題;⑵「復利率」問題;⑶「幾何」問題;
⑷「最值」型問題;⑸「圖表」類問題
典型例題:
1、將一條長20cm的鐵絲剪成兩段,並以每一段鐵絲的長度為周長作成一個正方形。
(1)要使這兩個正方形的面積之和等於17cm2,那麼這兩段鐵絲的長度分別為多少?
考點七、根與系數的關系
⑴前提:對於
而言,當滿足①
、②
時,
才能用韋達定理。
⑵主要內容:
⑶應用:整體代入求值。
典型例題:例1、已知關於x的方程
有兩個不相等的實數根
,
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?若存在,求出k的值;若不存在,請說明理由。
旋轉
知識網路圖表
圖案設計
識別及應用
關於原點對稱的點的坐標
中心對稱
中心對稱圖形
圖形旋轉
平移及性質
平移及性質
旋轉及性質
(1)
中心對稱:把一個圖形繞某一點旋轉
,如果能與另一個圖形重合.這個點叫對稱中心,這兩個圖形中的對應點關於這一點對稱.
(2)
關於旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等於旋轉角;旋轉前後的圖形全等。
第1題. 下列是中心對稱圖形的有()
(1)線段;(2)角;(3)等邊三角形;(4)正方形;(5)平行四邊形;(6)矩形;(7)等腰梯形.
A.2個 B.3個 C.4個 D.5個
答案:C.
第5題. 在線段、射線、兩條相交直線、五角星中,是中心對稱圖形的個數為()
A.1個 B.2個 C.3個 D.4個 答案:B.
圓
一、知識點
1、與圓有關的角——圓心角、圓周角
(1)圖中的圓心角 ∠ AOB ;圓周角∠
ACB ;
(2)如圖,已知∠AOB=50度,則∠ACB= 25
度;
(3)在上圖中,若AB是圓O的直徑,則∠AOB= 180
度;則∠ACB= 90
度;
2、圓的對稱性:
(1)圓是軸對稱圖形,其對稱軸是任意一條
過圓心 的直線;
圓是中心對稱圖形,對稱中心為 圓心 .
(2)垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧.
如圖,∵CD是圓O的直徑,CD⊥AB於E∴ = , =
3、點和圓的位置關系有三種:點在圓 ,點在圓 ,點在圓 ;
4、直線和圓的位置關系有三種:相 、相 、相 .
5、圓與圓的位置關系:
6、切線性質:
例4:(1)如圖,PA是⊙O的切線,點A是切點,則∠PAO= 度
(2)如圖,PA、PB是⊙O的切線,點A、B是切點,
則 = ,∠ =∠ ;
7、圓中的有關計算
(1)弧長的計算公式:
例5:若扇形的圓心角為60°,半徑為3,則這個扇形的弧長是多少?
解:因為扇形的弧長=
所以
=
= (答案保留π)
(2)扇形的面積:
例6:①若扇形的圓心角為60°,半徑為3,則這個扇形的面積為多少?
解:因為扇形的面積S=
所以S=
= (答案保留π)
②若扇形的弧長為12πcm,半徑為6㎝,則這個扇形的面積是多少?
解:因為扇形的面積S=
所以S= =
( 3)圓錐:
例7:圓錐的母線長為5cm,半徑為4cm,則圓錐的側面積是多少?
解:∵圓錐的側面展開圖是 形,展開圖的弧長等於
∴圓錐的側面積=
概率初步
【知識梳理】
1.生活中的隨機事件分為確定事件和不確定事件,確定事件又分為必然事件和不可能事件,其中,
① 必然事件發生的概率為1,即P(必然事件)=1;
② 不可能事件發生的概率為0,即P(不可能事件)=0;
③ 如果A為不確定事件,那麼0<P(A)<1
2.隨機事件發生的可能性(概率)的計算方法:
① 理論計算又分為如下兩種情況:
第一種:只涉及一步實驗的隨機事件發生的概率,如:根據概率的大小與面積的關系,對一類概率模型進行的計算;
第二種:通過列表法、列舉法、樹狀圖來計算涉及兩步或兩步以上實驗的隨機事件發生的概率,如:對游戲是否公平的計算。
② 實驗估算又分為如下兩種情況:
第一種:利用實驗的方法進行概率估算。要知道當實驗次數非常大時,實驗頻率可作為事件發生的概率的估計值,即大量實驗頻率穩定於理論概率。
第二種:利用模擬實驗的方法進行概率估算。如,利用計算器產生隨機數來模擬實驗。
綜上所述,目前掌握的有關於概率模型大致分為三類;第一類問題沒有理論概率,只能藉助實驗模擬獲得其估計值;第二類問題雖然存在理論概率但目前尚不可求,只能藉助實驗模擬獲得其估計值;第三類問題則是簡單的古典概型,理論上容易求出其概率。
❸ 初三的數學知識點
一、相似三角形(7個考點)
考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3:相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。
考點4:相似三角形的判定和性質及其應用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。
考點5:三角形的重心
考核要求:知道重心的定義並初步應用。
二、銳角函數值(2個考點)
考點7:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。
考點8:解直角三角形及其應用
考核要求:
(1)理解解直角三角形的意義;
(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
三、二次函數(4個考點)
考點9:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數
考核要求:
(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;
(2)知道常值函數;
(3)知道函數的表示方法,知道符號的意義。
考點10:用待定系數法求二次函數的解析式
考核要求:
(1)掌握求函數解析式的方法;
(2)在求函數解析式中熟練運用待定系數法。
注意求函數解析式的步驟:一設、二代、三列、四還原。
考點11:畫二次函數的圖像
考核要求:
(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像
(2)理解二次函數的圖像,體會數形結合思想;
(3)會畫二次函數的大致圖像。
考點12:二次函數的圖像及其基本性質
考核要求:
(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;
(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。
注意:
(1)解題時要
❹ 初三數學知識點歸納 中考必背數學重點知識總結
很多人想知道初戚清三數學的學習上需要掌握哪些重點知識,下面我為大家整理了一些中考必背的數學重點知識,供參考!
中考數學重要知識點歸納
一、基本知識
一、數與代數
A、數與式:
1、有理數
有理數:
①整數→正整數/0/負整數
②分數→正分數/負分數
數軸:
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。
②任何一個有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:
①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。
②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:
加法:
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。
③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:
①兩數相乘,同號得正,異號得負,絕對值相乘。
②任何數與0相乘得0。
③乘積為1的兩個有理數互為倒數。
除法:
①除以一個數等於乘以一個數的倒數。
②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數
無理數:無限不循環小數叫無理數
平方根:
①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。
②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。
③一個正數有2個平方根/0的平方根為0/負數沒有平方根。
④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:
①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。
②正數的立方根是正數、0的立方根是0、負數的立方根是負數。
③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
初三數學知識點整理
1、 實數的分類
有理數:整數汪正(包括:正整數、0、負整數)和分數(包括:有限小數和無限環循小數)都是有理數.如:-3,,0.231,0.737373...,,.
無理數:無限不環循小數叫做無理數如:π,-,0.1010010001...(兩個1之間依次多1個0).
實數:有理數和無理數統稱為實數.
2、無理數
在理解無理數時,要抓住"無限不循環"這一時之,它包含兩層意思:一是無限小數;二是不循環.二者缺一不可.歸納起來有四類:
(1)開方開不盡的數,如等;
(2)有特定意義的數,如圓周率π,或化簡後含有π的數,如+8等;
(3)有特定結構的數,如0.1010010001...等;
(4)某些三角函數,如sin60o等
注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標准.
3、非負數:正實數與零的統稱。(表為:x≥0)
常見的非負數有:
性質:若干個非負數的和為0,則每個非負擔數均為0。
4、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。
解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度困仔悔作為單位長度,規定直線上向右的方向為正方向,就得到數軸("三要素")
②任何一個有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。
作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。
5、相反數
實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關於原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。即:(1)實數的相反數是.(2)和互為相反數.
6、絕對值
一個數的絕對值就是表示這個數的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。正數大於零,負數小於零,正數大於一切負數,兩個負數,絕對值大的反而小。
(1)一個正實數的絕對值是它本身;一個負實數的絕對值是它的相反數;0的絕對值是0.即:﹝另有兩種寫法﹞
(2)實數的絕對值是一個非負數,從數軸上看,一個實數的絕對值就是數軸上表示這個數的點到原點的距離.
(3)幾個非負數的和等於零則每個非負數都等於零,例如:若,則,,.
注意:│a│≥0,符號"││"是"非負數"的標志;數a的絕對值只有一個;處理任何類型的題目,只要其中有"││"出現,其關鍵一步是去掉"││"符號。
初三數學必背公式大全
1.過兩點有且只有一條直線
2.兩點之間線段最短
3.同角或等角的補角相等
4.同角或等角的餘角相等
5.過一點有且只有一條直線和已知直線垂直
6.直線外一點與直線上各點連接的所有線段中,垂線段最短
7.平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9.同位角相等,兩直線平行
10.內錯角相等,兩直線平行
11.同旁內角互補,兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內錯角相等
14.兩直線平行,同旁內角互補
15.定理 三角形兩邊的和大於第三邊
16.推論 三角形兩邊的差小於第三邊
17.三角形內角和定理 三角形三個內角的和等於180°
18.推論1 直角三角形的兩個銳角互余
19.推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20.推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21.全等三角形的對應邊、對應角相等
22.邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23.角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24.推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25.邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26.斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27.定理1 在角的平分線上的點到這個角的兩邊的距離相等
28.定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點的集合
30.等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31.推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32.等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33.推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34.等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35.推論1 三個角都相等的三角形是等邊三角形
36.推論 2 有一個角等於60°的等腰三角形是等邊三角形
37.在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38.直角三角形斜邊上的中線等於斜邊上的一半
39.定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40.逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42.定理1 關於某條直線對稱的兩個圖形是全等形
43.定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44.定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45.逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46.勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47.勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48.定理 四邊形的內角和等於360°
49.四邊形的外角和等於360°
50.多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
❺ 鍒濅笁鏁板︿笂鍐岀煡璇嗙偣褰掔撼
銆銆鏁板︽槸璁稿氬悓瀛︾殑鐭鏉匡紝閭d箞鍒濅笁鏁板︿笂鍐岀殑鐭ヨ瘑鐐規湁鍝浜涘憿?蹇鏉ヤ竴璧蜂簡瑙d竴涓嬪惂銆備笅闈㈡槸鐢辨垜涓哄ぇ瀹舵暣鐞嗙殑鈥滃垵涓夋暟瀛︿笂鍐岀煡璇嗙偣褰掔撼鈥濓紝浠呬緵鍙傝冿紝嬈㈣繋澶у墮槄璇匯
銆銆鍒濅笁鏁板︿笂鍐岀煡璇嗙偣褰掔撼
銆銆浜屾℃牴寮
銆銆1銆佷簩嬈℃牴寮
銆銆寮忓瓙鍙鍋氫簩嬈℃牴寮忥紝浜屾℃牴寮忓繀欏繪弧瓚籌細鍚鏈変簩嬈℃牴鍙封溾;琚寮鏂規暟a蹇呴』鏄闈炶礋鏁般
銆銆2銆佹渶綆浜屾℃牴寮
銆銆鑻ヤ簩嬈℃牴寮忔弧瓚籌細琚寮鏂規暟鐨勫洜鏁版槸鏁存暟錛屽洜寮忔槸鏁村紡;琚寮鏂規暟涓涓嶅惈鑳藉紑寰楀敖鏂圭殑鍥犳暟鎴栧洜寮忥紝榪欐牱鐨勪簩嬈℃牴寮忓彨鍋氭渶綆浜屾℃牴寮忋
銆銆鍖栦簩嬈℃牴寮忎負鏈綆浜屾℃牴寮忕殑鏂規硶鍜屾ラわ細
銆銆(1)濡傛灉琚寮鏂規暟鏄鍒嗘暟(鍖呮嫭灝忔暟)鎴栧垎寮忥紝鍏堝埄鐢ㄥ晢鐨勭畻鏁板鉤鏂規牴鐨勬ц川鎶婂畠鍐欐垚鍒嗗紡鐨勫艦寮忥紝鐒跺悗鍒╃敤鍒嗘瘝鏈夌悊鍖栬繘琛屽寲綆銆
銆銆(2)濡傛灉琚寮鏂規暟鏄鏁存暟鎴栨暣寮忥紝鍏堝皢浠栦滑鍒嗚В鍥犳暟鎴栧洜寮忥紝鐒跺悗鎶婅兘寮寰楀敖鏂圭殑鍥犳暟鎴栧洜寮忓紑鍑烘潵銆
銆銆3銆佸悓綾諱簩嬈℃牴寮
銆銆鍑犱釜浜屾℃牴寮忓寲鎴愭渶綆浜屾℃牴寮忎互鍚庯紝濡傛灉琚寮鏂規暟鐩稿悓錛岃繖鍑犱釜浜屾℃牴寮忓彨鍋氬悓綾諱簩嬈℃牴寮忋
銆銆4銆佷簩嬈℃牴寮忕殑鎬ц川
銆銆5銆佷簩嬈℃牴寮忔販鍚堣繍綆
銆銆浜屾℃牴寮忕殑娣峰悎榪愮畻涓庡疄鏁頒腑鐨勮繍綆楅『搴忎竴鏍鳳紝鍏堜箻鏂癸紝鍐嶄箻闄わ紝鏈鍚庡姞鍑忥紝鏈夋嫭鍙風殑鍏堢畻鎷鍙烽噷鐨(鎴栧厛鍘繪嫭鍙)銆
銆銆涓鍏冧簩嬈℃柟紼
銆銆涓銆佷竴鍏冧簩嬈℃柟紼
銆銆1銆佷竴鍏冧簩嬈℃柟紼
銆銆鍚鏈変竴涓鏈鐭ユ暟錛屽苟涓旀湭鐭ユ暟鐨勬渶楂樻℃暟鏄2鐨勬暣寮忔柟紼嬪彨鍋氫竴鍏冧簩嬈℃柟紼嬨
銆銆2銆佷竴鍏冧簩嬈℃柟紼嬬殑涓鑸褰㈠紡
銆銆錛屽畠鐨勭壒寰佹槸錛氱瓑寮忓乏杈瑰嶮涓涓鍏充簬鏈鐭ユ暟x鐨勪簩嬈″氶」寮忥紝絳夊紡鍙寵竟鏄闆訛紝鍏朵腑鍙鍋氫簩嬈¢」錛宎鍙鍋氫簩嬈¢」緋繪暟;bx鍙鍋氫竴嬈¢」錛宐鍙鍋氫竴嬈¢」緋繪暟;c鍙鍋氬父鏁伴」銆
銆銆浜屻佷竴鍏冧簩嬈℃柟紼嬬殑瑙f硶
銆銆1銆佺洿鎺ュ紑騫蟲柟娉
銆銆2銆侀厤鏂規硶
銆銆閰嶆柟娉曟槸涓縐嶉噸瑕佺殑鏁板︽柟娉曪紝瀹冧笉浠呭湪瑙d竴鍏冧簩嬈℃柟紼嬩笂鏈夋墍搴旂敤錛岃屼笖鍦ㄦ暟瀛︾殑鍏
銆銆3銆佸叕寮忔硶
銆銆4銆佸洜寮忓垎瑙f硶
銆銆鍥犲紡鍒嗚В娉曞氨鏄鍒╃敤鍥犲紡鍒嗚В鐨勬墜孌碉紝奼傚嚭鏂圭▼鐨勮В鐨勬柟娉曪紝榪欑嶆柟娉曠畝鍗曟槗琛岋紝鏄瑙d竴鍏冧簩嬈℃柟紼嬫渶甯哥敤鐨勬柟娉曘
銆銆涓夈佷竴鍏冧簩嬈℃柟紼嬫牴鐨勫垽鍒寮
銆銆鏍圭殑鍒ゅ埆寮
銆銆鍥涖佷竴鍏冧簩嬈℃柟紼嬫牴涓庣郴鏁扮殑鍏崇郴
銆銆鏃嬭漿
銆銆涓銆佹棆杞
銆銆1銆佸畾涔
銆銆鎶婁竴涓鍥懼艦緇曟煇涓鐐筄杞鍔ㄤ竴涓瑙掑害鐨勫浘褰㈠彉鎹㈠彨鍋氭棆杞錛屽叾涓璒鍙鍋氭棆杞涓蹇冿紝杞鍔ㄧ殑瑙掑彨鍋氭棆杞瑙掋
銆銆2銆佹ц川
銆銆(1)瀵瑰簲鐐瑰埌鏃嬭漿涓蹇冪殑璺濈葷浉絳夈
銆銆(2)瀵瑰簲鐐逛笌鏃嬭漿涓蹇冩墍榪炵嚎孌電殑澶硅掔瓑浜庢棆杞瑙掋
銆銆浜屻佷腑蹇冨圭О
銆銆1銆佸畾涔
銆銆鎶婁竴涓鍥懼艦緇曠潃鏌愪竴涓鐐規棆杞180擄錛屽傛灉鏃嬭漿鍚庣殑鍥懼艦鑳藉熷拰鍘熸潵鐨勫浘褰浜掔浉閲嶅悎錛岄偅涔堣繖涓鍥懼艦鍙鍋氫腑蹇冨圭О鍥懼艦錛岃繖涓鐐瑰氨鏄瀹冪殑瀵圭О涓蹇冦
銆銆2銆佹ц川
銆銆(1)鍏充簬涓蹇冨圭О鐨勪袱涓鍥懼艦鏄鍏ㄧ瓑褰銆
銆銆(2)鍏充簬涓蹇冨圭О鐨勪袱涓鍥懼艦錛屽圭О鐐硅繛綰塊兘緇忚繃瀵圭О涓蹇冿紝騫朵笖琚瀵圭О涓蹇冨鉤鍒嗐
銆銆(3)鍏充簬涓蹇冨圭О鐨勪袱涓鍥懼艦錛屽瑰簲綰挎靛鉤琛(鎴栧湪鍚屼竴鐩寸嚎涓)涓旂浉絳夈
銆銆3銆佸垽瀹
銆銆濡傛灉涓や釜鍥懼艦鐨勫瑰簲鐐硅繛綰塊兘緇忚繃鏌愪竴鐐癸紝騫朵笖琚榪欎竴鐐瑰鉤鍒嗭紝閭d箞榪欎袱涓鍥懼艦鍏充簬榪欎竴鐐瑰圭О銆
銆銆4銆佷腑蹇冨圭О鍥懼艦
銆銆鎶婁竴涓鍥懼艦緇曟煇涓涓鐐規棆杞180擄錛屽傛灉鏃嬭漿鍚庣殑鍥懼艦鑳藉熷拰鍘熸潵鐨勫浘褰浜掔浉閲嶅悎錛岄偅涔堣繖涓鍥懼艦鍙鍋氫腑蹇冨圭О鍥懼艦錛岃繖涓搴楀氨鏄瀹冪殑瀵圭О涓蹇冦
銆銆鍧愭爣緋諱腑瀵圭О鐐圭殑鐗瑰緛錛
銆銆1銆佸叧浜庡師鐐瑰圭О鐨勭偣鐨勭壒寰
銆銆涓や釜鐐瑰叧浜庡師鐐瑰圭О鏃訛紝瀹冧滑鐨勫潗鏍囩殑絎﹀彿鐩稿弽錛屽嵆鐐筆(x錛寉)鍏充簬鍘熺偣鐨勫圭О鐐逛負P鈥(-x錛-y)銆
銆銆2銆佸叧浜巟杞村圭О鐨勭偣鐨勭壒寰
銆銆涓や釜鐐瑰叧浜巟杞村圭О鏃訛紝瀹冧滑鐨勫潗鏍囦腑錛寈鐩哥瓑錛寉鐨勭﹀彿鐩稿弽錛屽嵆鐐筆(x錛寉)鍏充簬x杞寸殑瀵圭О鐐逛負P鈥(x錛-y)銆
銆銆3銆佸叧浜巠杞村圭О鐨勭偣鐨勭壒寰
銆銆涓や釜鐐瑰叧浜巠杞村圭О鏃訛紝瀹冧滑鐨勫潗鏍囦腑錛寉鐩哥瓑錛寈鐨勭﹀彿鐩稿弽錛屽嵆鐐筆(x錛寉)鍏充簬y杞寸殑瀵圭О鐐逛負P鈥(-x錛寉)銆
銆銆鎷撳睍闃呰伙細鍒濅笁鏁板︽庝箞蹇閫熸彁楂
銆銆鏃墮棿鍒嗛厤綺劇粏鍖
銆銆鏁板︿腑鑰冨嶄範搴旀棭浣滄墦綆楀拰瀹夋帓錛屾巿璇炬暀甯堝簲閽堝瑰︽牎鏁欏﹀疄闄呭拰瀛︾敓鐗圭偣錛屽埗璁㈣﹀疄鍒囧疄鍙琛岀殑璁″垝銆備竴鑸鍦3鏈堝簳瀹屾垚鏂版巿璇句換鍔★紝4鏈堜笂鏃鍚鍔ㄤ腑鑰冨嶄範銆4鏈堝簳瀹屾垚絎涓杞鈥滃く瀹炲熀紜鈥濆嶄範錛屽叏闈㈢郴緇熷嶄範錛屼互璇炬湰涓烘湰錛屽垎鍗曞厓銆佺珷鑺傦紝渚濇嵁璇劇▼鏍囧噯銆佷腑鑰冭存槑瑕佹眰澶嶄範錛屽己鍖栫煡璇嗙偣銆佸崟鍏冪珷鑺傘佽冪偣榪囧叧璁緇冿紝澶瀹炲熀紜錛屽煿鍏誨熀鏈鎶鑳;5鏈堝簳瀹屾垚絎浜岃疆鈥滀笓棰樿緇冣濆嶄範錛屽琺鍥哄熀紜錛屾瀯寤虹煡璇嗙綉緇滐紝浣誇箣鏉$悊鍖栥佺郴緇熷寲錛屽己鍖栧垎鍧楃患鍚堝拰涓撻」鐭ヨ瘑璁緇冿紝紿佺牬閲嶇偣銆侀毦鐐癸紝紿佸嚭璁緇冪伒媧昏繍鐢ㄧ煡璇嗭紝鍩瑰吇瑙e喅瀹為檯闂棰樼殑鑳藉姏錛屽悓鏃訛紝鏌ヨˉ鐭ヨ瘑鐩茬偣錛屽姞寮鴻緇;6鏈堜笂鏃鑷充腑鑰冨墠瀹屾垚絎涓夎疆鈥滅患鍚堟嫻嬧濆嶄範錛屽洖鎵e弻鍩猴紝鎺掓煡鑰冪偣錛屾煡婕忚ˉ緙猴紝娉ㄩ噸緇煎悎妯℃嫙,鍔犲己瀛︾敓搴旇瘯鎶宸у拰瑙i樻柟娉曟寚瀵礆紝鍑忓皯闈炴櫤鍔涘洜緔犲け鍒嗐
銆銆涓鑰冭存槑鐗㈣板寲
銆銆浣滀負鑰佸笀瑕佹繁鍏ョ爺絀朵腑鑰冭存槑錛屾帉鎻$煡璇嗙偣鍜岃冪翰涓鐨勯毦鏄撳害銆傚湪澶嶄範鏃惰佸笀瑕佷互銆婅冭瘯璇存槑銆嬩腑鐨勮佹眰涓哄熀紜錛岄噸瑙嗗熀紜鐭ヨ瘑鐨勫嶄範錛屽苟涓嶄竴鍛沖己璋冮毦棰樻垨鍋忛樼殑璁緇冿紝鑰岃佹牴鎹鍛介橀毦鏄撶▼搴︾瓑鐗圭偣錛屾湁閽堝規х殑榪涜屽嶄範銆
銆銆澶嶄範璧勬枡綺鵑夊寲
銆銆鍦ㄥ嶄範鏃剁簿閫夎祫鏂欍佺敤濂借祫鏂欍傚湪澶嶄範涔嬪垵鑰佸笀灝辮佷負瀛︾敓綺懼績鎸戦変簡鍑犱喚璧勬枡錛岃繘琛屾瘮杈冨悗紜瀹氫竴鍒頒袱浠界煡璇嗙偣鍏錛岄毦搴﹂備腑鐨勮祫鏂欎綔涓鴻懼唴澶嶄範鐢ㄤ功銆傚︾敓鎵嬪ご澶嶄範璧勬枡涓嶅疁榪囧氾紝澶氫簡鍙嶈屼貢錛屽規槗浜х敓榪欐牱娌″畬鎴愶紝閭f牱鎵嶅仛涓鐐圭偣鐨勬劅瑙夛紝榪欐牱瀹規槗閫犳垚鐭ヨ瘑鐐圭殑閬楁紡錛屽悓鏃朵篃浼氫嬌瀛︾敓浜х敓鐑︾嚗鐨勫績鐞嗐傛墍浠ワ紝鏁欏笀瑕佹浛瀛︾敓緇嗗績鎸戦夊嶄範璧勬枡錛屽苟璁╁︾敓鏄庣櫧鏁板﹀嶄範璧勬枡搴旂簿鑰屼笉搴斿氱殑閬撶悊銆
銆銆鍩烘湰姒傚康涔犻樺寲
銆銆鏁板︽傚康鐨勫嶄範涓嶆槸綆鍗曠殑閲嶅嶏紝鑰屾槸瑕佸緩絝嬫傚康涔嬮棿鐨勬湁鏈鴻仈緋伙紝涓嶈兘姝昏扮‖鑳岋紝瑕佷細瑙e喅瀹為檯闂棰樸備緥濡傦紝鍒濅腑鏁板︿腑娑夊強鍒版湁鍏斥滃紡鈥濈殑姒傚康姣旇緝澶氾紝鏈夆滀唬鏁板紡鈥濄佲滄暣寮忊濄佲滃崟欏瑰紡鈥濄佲滃氶」寮忊濄佲滃悓綾婚」鈥濄佲滃垎寮忊濄佲滄湁鐞嗗紡鈥濄佲滄渶綆鍒嗗紡鈥濄佲滀簩嬈℃牴寮忊濄佲滄渶綆浜屾℃牴寮忊濄佲滃悓綾諱簩嬈℃牴寮忊濈瓑姒傚康錛屾暀甯堣侀拡瀵硅繖浜涙傚康緙栦竴鍒頒袱涓涔犻樺紩瀵煎︾敓寮勬竻榪欎簺姒傚康涔嬮棿鐨勮仈緋諱笌鍖哄埆銆備絾鏈変竴鐐瑰煎緱鑲瀹氱殑鏄錛岃佹兂鐢ㄨ繖浜涙傚康鍘昏В棰橈紝棣栧厛蹇呴』灝嗗畠浠鐔熻頒簬蹇冦
❻ 初三數學知識點歸納 九年級數學重點知識總結
很多人想知道初三數學上有哪些重要知識點,初三必背重點知識有哪些呢?下面我為大家介紹一下!
初三數學重要知識點歸納大全
一、 圓的對稱性
1、圓的軸對稱性
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
二、 弧、弦、弦心距、圓心角之間的關系定理
1、圓心角
頂點在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦型顫心距中有一組量相等,拿租和那麼它們所對應的其餘各組量都分別相等。
三、圓周角定理及其推論
1、圓周角
頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等於它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
四、點和圓的位置關系
設⊙O的半徑是r,點P到圓心O的距離為d,則有:
d=r 點P在⊙O上;
d>r 點P在⊙O外。
過三點的圓
1、過三點的圓
不在同一直線上消盯的三個點確定一個圓。
2、三角形的外接圓
經過三角形的三個頂點的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4、圓內接四邊形性質(四點共圓的判定條件)
圓內接四邊形對角互補。
五、一些基本公式
三倍角公式
三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推導
附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
六、一些重點知識
巧記三角函數定義:初中所學的三角函數有正弦、餘弦、正切、餘切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:餘弦或餘弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數的增減性:正增余減特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣"123,321,三九二十七"既可。
平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分"跑不了",對角相等也有用,"兩組對角"才能成。
梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在"△"現;延長兩腰交一點,"△"中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎麼添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。
圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉比例,兩端各自找聯系。
正多邊形訣竅歌:份相等分割圓,n值必須大於三,依次連接各分點,內接正n邊形在眼前。
中考數學必考重要知識點大全
知識點1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數項是-2.
2.一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2.
3.一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識點2:直角坐標系與點的位置
1.直角坐標系中,點A(3,0)在y軸上。
2.直角坐標系中,x軸上的任意點的橫坐標為0.
3.直角坐標系中,點A(1,1)在第一象限。
4.直角坐標系中,點A(-2,3)在第四象限。
5.直角坐標系中,點A(-2,1)在第二象限。
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=的值為1.
2.當x=3時,函數y=的值為1.
3.當x=-1時,函數y=的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數。
2.函數y=4x+1是正比例函數。
3.函數是反比例函數。
4.拋物線y=-3(x-2)2-5的開口向下。
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2)。
7.反比例函數的圖象在第一、三象限。
知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3.
知識點6:特殊三角函數值
1.cos30°=根號3/2。
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
初三數學學習方法與技巧總結
1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.
2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.
3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.
4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.