當前位置:首頁 » 基礎知識 » 高二數學必修五第一章知識總結
擴展閱讀
送同學小禮物送什麼 2025-02-02 09:53:46
k線基礎知識什麼是k線 2025-02-02 09:48:57

高二數學必修五第一章知識總結

發布時間: 2024-12-14 22:54:53

Ⅰ 高二數學必修五教學知識點

人是在失敗中長大,每一個名人背後都有不為人知的 故事 寒窗苦的讀聖賢書,既然我們沒在哪社會而感到高興,既然古人為我們創造知識何必不去珍惜古人的汗水。下面是我給大家帶來的 高二數學 必修五教學知識點,希望能幫助到你!

高二數學必修五教學知識點1

函數的單調性、奇偶性、周期性

單調性:定義:注意定義是相對與某個具體的區間而言。

判定 方法 有:定義法(作差比較和作商比較)

導數法(適用於多項式函數)

復合函數法和圖像法。

應用:比較大小,證明不等式,解不等式。

奇偶性:

定義:注意區間是否關於原點對稱,比較f(_)與f(-_)的關系。f(_)-f(-_)=0f(_)=f(-_)f(_)為偶函數;

f(_)+f(-_)=0f(_)=-f(-_)f(_)為奇函數。

判別方法:定義法,圖像法,復合函數法

應用:把函數值進行轉化求解。

周期性:定義:若函數f(_)對定義域內的任意_滿足:f(_+T)=f(_),則T為函數f(_)的周期。

其他:若函數f(_)對定義域內的任意_滿足:f(_+a)=f(_-a),則2a為函數f(_)的周期.

應用:求函數值和某個區間上的函數解析式。

四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。

常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)

平移變換y=f(_)→y=f(_+a),y=f(_)+b

注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2_)經過平移得到函數y=f(2_+4)的圖象。

(ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。

對稱變換y=f(_)→y=f(-_),關於y軸對稱

y=f(_)→y=-f(_),關於_軸對稱

y=f(_)→y=f|_|,把_軸上方的圖象保留,_軸下方的圖象關於_軸對稱

y=f(_)→y=|f(_)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函數)

伸縮變換:y=f(_)→y=f(ω_),

y=f(_)→y=Af(ω_+φ)具體參照三角函數的圖象變換。

一個重要結論:若f(a-_)=f(a+_),則函數y=f(_)的圖像關於直線_=a對稱;

高二數學必修五教學知識點2

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。

選修Ⅱ(24個)

十二、概率與統計(14課時,6個)

1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸。

十三、極限(12課時,6個)

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

十四、導數(18課時,8個)

1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的值和最小值。

十五、復數(4課時,4個)

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。

高二數學必修五教學知識點3

考點一:求導公式。

例1.f(_)是f(_)13_2_1的導函數,則f(1)的值是3

考點二:導數的幾何意義。

例2.已知函數yf(_)的圖象在點M(1,f(1))處的切線方程是y

1_2,則f(1)f(1)2

,3)處的切線方程是例3.曲線y_32_24_2在點(1

點評:以上兩小題均是對導數的幾何意義的考查。

考點三:導數的幾何意義的應用。

例4.已知曲線C:y_33_22_,直線l:yk_,且直線l與曲線C相切於點_0,y0_00,求直線l的方程及切點坐標。

點評:本小題考查導數幾何意義的應用。解決此類問題時應注意「切點既在曲線上又在切線上」這個條件的應用。函數在某點可導是相應曲線上過該點存在切線的充分條件,而不是必要條件。

考點四:函數的單調性。

例5.已知f_a_3__1在R上是減函數,求a的取值范圍。32

點評:本題考查導數在函數單調性中的應用。對於高次函數單調性問題,要有求導意識。

考點五:函數的極值。

例6.設函數f(_)2_33a_23b_8c在_1及_2時取得極值。

(1)求a、b的值;

(2)若對於任意的_[0,3],都有f(_)c2成立,求c的取值范圍。

點評:本題考查利用導數求函數的極值。求可導函數f_的極值步驟:

①求導數f'_;

②求f'_0的根;③將f'_0的根在數軸上標出,得出單調區間,由f'_在各區間上取值的正負可確定並求出函數f_的極值。

考點六:函數的最值。

例7.已知a為實數,f__24_a。求導數f'_;(2)若f'10,求f_在區間2,2上的值和最小值。

點評:本題考查可導函數最值的求法。求可導函數f_在區間a,b上的最值,要先求出函數f_在區間a,b上的極值,然後與fa和fb進行比較,從而得出函數的最小值。

考點七:導數的綜合性問題。

例8.設函數f(_)a_3b_c(a0)為奇函數,其圖象在點(1,f(1))處的切線與直線_6y70垂直,導函數

(1)求a,b,c的值;f'(_)的最小值為12。

(2)求函數f(_)的單調遞增區間,並求函數f(_)在[1,3]上的值和最小值。

點評:本題考查函數的奇偶性、單調性、二次函數的最值、導數的應用等基礎知識,以及推理能力和運算能力。


高二數學必修五教學知識點相關 文章 :

★ 高二數學必修5知識點總結

★ 高二數學必修五知識點

★ 高二數學必修五知識點總結

★ 高中數學必修5數列知識點總結

★ 高中數學必修5全部公式

★ 高二數學必修5等差數列知識點

★ 必修五數學知識

★ 高二數學必修5數列知識點

★ 高中數學學霸提分秘籍:必修五知識點總結

★ 高二數學必修五不等式知識點總結

Ⅱ 高二數學必修五知識點總結

我們在學習當中認真預習好新的課程,上課專心聽講;不懂的及時請教老師或者同學。放學回來要認真把老師布置的作業完成,並且把課堂上學過的知識好好溫習一遍;這樣才能把學過的內容牢牢地記在腦子里。以下是我給大家整理的 高二數學 必修五知識點 總結 ,希望能幫助到你!

高二數學必修五知識點總結1

1.等差數列通項公式

an=a1+(n-1)d

n=1時a1=S1

n≥2時an=Sn-Sn-1

an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

2.等差中項

由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

有關系:A=(a+b)÷2

3.前n項和

倒序相加法推導前n項和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

∴Sn=n(a1+an)÷2

等差數列的前n項和等於首末兩項的和與項數乘積的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

4.等差數列性質

一、任意兩項am,an的關系為:

an=am+(n-m)d

它可以看作等差數列廣義的通項公式。

二、從等差數列的定義、通項公式,前n項和公式還可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq

四、對任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。

高二數學必修五知識點總結2

一、不等關系及不等式知識點

1.不等式的定義

在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號、、連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數的大小

兩個實數的大小是用實數的運算性質來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

3.不等式的性質

(1)對稱性:ab

(2)傳遞性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可開方:a0

(nN,n2).

注意:

一個技巧

作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

一種 方法

待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.

高二數學必修五知識點總結3

解三角形

1、三角形三角關系:A+B+C=180°;C=180°-(A+B);

2、三角形三邊關系:a+b>c; a-b3、三角形中的基本關系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222

4、正弦定理:在???C中,a、b、c分別為角?、?、C的對邊,R為???C的外abc???2R. 接圓的半徑,則有sin?sin?sinCsin

5、正弦定理的變形公式:

①化角為邊:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R

a?b?cabc???③a:b:c?sin?:sin?:sinC;④. sin??sin??sinCsin?sin?sinC②化邊為角:sin??6、兩類正弦定理解三角形的問題:

①已知兩角和任意一邊,求其他的兩邊及一角.

②已知兩角和其中一邊的對角,求其他邊角.(對於已知兩邊和其中一邊所對的角的題型要注意解的情況(一解、兩解、三解))

7、餘弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?, 222222c2?a2?b2?2abcosC.

b2?c2?a2a2?c2?b2a2?b2?c2

8、餘弦定理的推論:cos??,cos??,cosC?. 2bc2ac2ab(餘弦定理主要解決的問題:1.已知兩邊和夾角,求其餘的量。2.已知三邊求角)

9、餘弦定理主要解決的問題:①已知兩邊和夾角,求其餘的量。②已知三邊求角)

10、如何判斷三角形的形狀:判定三角形形狀時,可利用正餘弦定理實現邊角轉化,統一成邊的形式或角的形式設a、b、c是???C的角?、?、C

的對邊,則:

①若a?b?c,則C?90;②若a?b?c,則C?90;

③若a?b?c,則C?90.

高二數學必修五知識點總結相關 文章 :

★ 高二數學必修5知識點總結

★ 高二數學必修五知識點總結

★ 高中數學學霸提分秘籍:必修五知識點總結

★ 高中數學必修5數列知識點總結

★ 高二數學必修5等差數列知識點

★ 高中數學必修5全部公式

★ 高二數學必修五知識點

★ 高二數學知識點總結

★ 高二數學必修五不等式知識點總結

★ 高二數學必修5數列知識點

Ⅲ 高二數學必修一到五知識點總結

高二時期的學習目標主要體現在班級或年級里你應該達到或者超過什麼水平,以及你在高中 畢業 時將要達到什麼水平,學到什麼知識和技能,考上什麼類型的大學等。以下是我給大家整理的 高二數學 必修一到五知識點 總結 ,希望大家能夠喜歡!

高二數學必修一到五知識點總結1

1、圓的定義:

平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(1)標准方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表衫尺示任何圖形。

(3)求圓方程的 方法 :

一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

3、直線與圓的位置關系:

直線與圓的位置關系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有

(2)過圓外一點的切線:

①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關系:

通過兩圓半徑的和(差),與圓心或悔高距前亮(d)之間的大小比較來確定。

設圓,

兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內切,連心線經過切點,只有一條公切線;

當時,兩圓內含;當時,為同心圓。

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點

高二數學必修一到五知識點總結2

數列定義:

如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。

等差數列的通項公式為:an=a1+(n-1)d(1)

前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

以上n均屬於正整數。

解釋說明:

從(1)式可以看出,an是n的一次函數(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0。

在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數列的平均數。

且任意兩項am,an的關系為:an=am+(n-m)d

它可以看作等差數列廣義的通項公式。

推論公式:

從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。

基本公式:

和=(首項+末項)×項數÷2

項數=(末項-首項)÷公差+1

首項=2和÷項數-末項

末項=2和÷項數-首項

末項=首項+(項數-1)×公差

高二數學必修一到五知識點總結3

1.輾轉相除法是用於求公約數的一種方法,這種演算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得演算法.

2.所謂輾轉相法,就是對於給定的兩個數,用較大的數除以較小的數.若余數不為零,則將較小的數和余數構成新的一對數,繼續上面的除法,直到大數被小數除盡,則這時的除數就是原來兩個數的公約數.

3.更相減損術是一種求兩數公約數的方法.其基本過程是:對於給定的兩數,用較大的數減去較小的數,接著把所得的差與較小的數比較,並以大數減小數,繼續這個操作,直到所得的數相等為止,則這個數就是所求的公約數.

4.秦九韶演算法是一種用於計算一元二次多項式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.進位制是人們為了計數和運算方便而約定的記數系統.「滿進一」,就是k進制,進制的基數是k.

7.將進制的數化為十進制數的方法是:先將進制數寫成用各位上的數字與k的冪的乘積之和的形式,再按照十進制數的運算規則計算出結果.

8.將十進制數化為進制數的方法是:除k取余法.即用k連續去除該十進制數或所得的商,直到商為零為止,然後把每次所得的余數倒著排成一個數就是相應的進制數.


高二數學必修一到五知識點總結相關 文章 :

★ 高二數學必修5知識點總結

★ 高二數學必修一知識點總結

★ 高二數學知識點總結

★ 高中數學必修一知識點總結

★ 高二數學整體知識總結

★ 高一數學必修五知識點總結

★ 高二數學考點知識點總結復習大綱

★ 高中數學必修1知識點總結

★ 高二數學知識點總結(人教版)

★ 高中數學學霸提分秘籍:必修五知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();