當前位置:首頁 » 基礎知識 » 小升初數學考點知識總結
擴展閱讀
如何找到知道名字的同學 2024-12-14 17:42:18
然而你又怎麼回頭歌詞 2024-12-14 17:31:24

小升初數學考點知識總結

發布時間: 2024-12-14 15:43:07

Ⅰ 小升初一至六年級數學知識點整理

水滴石穿,繩鋸木斷。備考小升初考試 ,也需要一點點積累才能到達好的效果,下面是我為大家帶來的有關小升初一至 六年級數學 知識點整理,希望大家喜歡。

▼▼目錄▼▼

1-6年級數學知識體系

必背定義、定理公式

小升初算術知識點

數量關系計算公式方面

一般運算規則

小升初數學知識點: 1-6年級知識體系

小學一年級九九乘法口訣表。學會基礎加減乘。

小學二年級完善乘法口訣表,學會除混合運算,基礎幾何圖形。

小學三年級學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。

小學四年級線角自然數整數,素因數梯形對稱,分數小數計算。

小學五年級分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。

小學六年級比例百分比概率,圓扇圓柱及圓錐。

>>>

小升初數學知識點: 必背定義、定理公式

三角形的面積=底×高÷2。公式S=a×h÷2

正方形的面積=邊長×邊長公式S=a×a

長方形的面積=長×寬公式S=a×b

平行四邊形的面積=底×高公式S=a×h

梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的體積=長×寬×高公式:V=abh

長方體(或正方體)的體積=底面積×高公式:V=abh

正方體的體積=棱長×棱長×棱長公式:V=aaa

圓的周長=直徑×π公式:L=πd=2πr

圓的面積=半徑×半徑×π公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數的乘法則:用分子的積做分子,用分母的積做分母。

分數的除法則:除以一個數等於乘以這個數的倒數。

>>>

小升初數學知識點: 算術方面

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

3、乘法交換律:兩數相乘,交換因數的位置,積不變。

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5

6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。

簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。

等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

8、什麼叫方程式?答:含有未知數的等式叫方程式。

9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。

學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

15、分數除以整數(0除外),等於分數乘以這個整數的倒數。

16、真分數:分子比分母小的分數叫做真分數。

17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

20、一個數除以分數,等於這個數乘以分數的倒數。

21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

>>>

小升初數學知識點: 數量關系計算公式方面

1、單價×數量=總價

2、單產量×數量=總產量

3、速度×時間=路程

4、工效×時間=工作總量

5、加數+加數=和

一個加數=和+另一個加數

被減數-減數=差

減數=被減數-差

被減數=減數+差

因數×因數=積

一個因數=積÷另一個因數

被除數÷除數=商

除數=被除數÷商

被除數=商×除數

有餘數的除法:被除數=商×除數+余數

一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1噸=1000千克

1千克=1000克=

1公斤=1市斤

1公頃=10000平方米。

1畝=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3

比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。

10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y

12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y

百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。

把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

15、要學會把小數化成分數和把分數化成小數的化發。

16、公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中的一個,叫做公約數。)

17、互質數:公約數只有1的兩個數,叫做互質數。

18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用公約數)

21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。

分數計算到最後,得數必須化成最簡分數。

個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3.141414

32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。

如3.141592654

33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3.141592654……

34、什麼叫代數?代數就是用字母代替數。

35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x=ab+c

>>>

小升初數學知識點: 一般運算規則

1每份數×份數=總數

總數÷每份數=份數

總數÷份數=每份數

21倍數×倍數=幾倍數

幾倍數÷1倍數=倍數

幾倍數÷倍數=1倍數

3速度×時間=路程

路程÷速度=時間

路程÷時間=速度

4單價×數量=總價

總價÷單價=數量

總價÷數量=單價

5工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

6加數+加數=和

和-一個加數=另一個加數

7被減數-減數=差

被減數-差=減數差+減數=被減數

8因數×因數=積

積÷一個因數=另一個因數

9被除數÷除數=商

被除數÷商=除數商×除數=被除數

四、小學數學圖形計算公式

1正方形

C周長S面積a邊長

周長=邊長×4C=4a

面積=邊長×邊長S=a×a

2正方體

V:體積a:棱長

表面積=棱長×棱長×6S表=a×a×6

體積=棱長×棱長×棱長V=a×a×a

3長方形

C周長S面積a邊長

周長=(長+寬)×2C=2(a+b)

面積=長×寬S=ab

4長方體

V:體積s:面積a:長b:寬h:高

表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)

體積=長×寬×高V=abh

5三角形

s面積a底h高

面積=底×高÷2s=ah÷2

三角形高=面積×2÷底三角形底=面積×2÷高

6平行四邊形

s面積a底h高

面積=底×高s=ah

7梯形

s面積a上底b下底h高

面積=(上底+下底)×高÷2s=(a+b)×h÷2

8圓形

S面積C周長∏d=直徑r=半徑

周長=直徑×∏=2×∏×半徑C=∏d=2∏r

面積=半徑×半徑×∏

9圓柱體

v:體積h:高s;底面積r:底面半徑c:底面周長

側面積=底面周長×高表面積=側面積+底面積×2

體積=底面積×高體積=側面積÷2×半徑

10圓錐體

v:體積h:高s;底面積r:底面半徑

體積=底面積×高÷3

>>>


小升初一至六年級數學知識點整理相關 文章 :

★ 小升初一至六年級數學知識點整理

★ 小升初考試必備數學一到六年級的知識點

★ 六年級數學知識點梳理

★ 小升初數學考試知識點整理

★ 小升初數學知識考點歸納

★ 小升初數學知識點總結

★ 六年級數學知識點整理

★ 小升初數學考試必備知識點與易錯點

★ 小升初數學知識點講解:數量關系計算公式+數學知識點整理

★ 攻克小升初數學必考的知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅱ 如何高效復習小升初數學

小升初數學重點知識的復習方法一:
小學數學的應用題往往是概念、公式的應用,正方形、平行四邊形、三角形的、梯形的面積計算方法等等。
(一)分數、百分數的應用題
分率的概念是解題的關鍵,其中標准量「1」的選取是解題突破口。
(二)工程問題
工程問題要弄清工作量、工作效率、工作時間三者之間的關系。
(三)行程問題
從表層意義上是考查學生對路程、時間、速度三者關系的認識,從深層次的角度分析,實際上是檢查學生的變通能力,因為需要考慮的不僅僅是路程=時間×速度等,往往還涉及到時間、地點和方向等諸多要素。
(四)濃度問題
這類題目要求了解的關系式:溶液=溶質+溶劑;濃度=溶質/溶液;溶液=溶質/濃度等等。小升初常考的幾何問題
面積、體積問題,主要考慮以下內容:平行四邊形面積計算公式怎樣得到的?三角形和梯形面積計算公式怎樣得到的?圓的面積計算公式呢?思索正方形面積是怎樣計算的?為什麼?求表面積就是求立體圖形的什麼?長方體表面積是怎樣算的?這類題還有什麼簡便的方法?圓柱體表面積是怎樣算的?求長方體和圓柱的體積有什麼相同的地方?
圓柱(錐)問題:要認識圓柱的底面、側面和高;認識圓錐的底面和高。要知道圓柱側面展開的圖形,理解求圓柱的側面積、表面積的計算方法,會計算圓柱體的側面積和表面積,能根據實際情況靈活應用計算方法,並認識近似數的進一法。小升初常考的統計題
簡單的統計表、統計圖、還學過求平均數和求百分數等都是統計初步知識。
在統計工作中除了對數據進行分類整理用統計表來表示以外,有時還可以用統計圖來表示。常見統計圖有以下三類:條形統計圖;折線統計圖;扇形統計圖。
要認識統計圖,並明確統計圖的特點和作用,經歷收集、整理數據和用統計圖表示數據、整理結果過程。能根據繪制出的統計圖,分析數據所反映的一些簡單事實,能做出一些簡單的推理與判斷,進一步認識統計是解決實際問題的一種策略和方法。
小升初(xiaoxue.chazidian.com)數學重點知識的復習方法二:
抓住課堂
理科學習重在平日功夫,不適於突擊復習。平日學習最重要的是課堂上課,聽講要聚精會神,思維緊跟老師。同時要說明一點,許多同學容易忽略老師所講的數學思想、數學方法,而注重題目的解答,其實諸如「化歸」、「數形結合」等思想方法遠遠重要於某道題目的解答。
高質量完成作業
所謂高質量是指高正確率和高速度。寫作業時,有時同一類型的題重復練習,這時就要有意識的考查速度和准確率,並且在每做完一次時能夠對此類題目有更深層的思考,諸如它考查的內容,運用的數學思想方法,解題的規律、技巧等。另外對於老師布置的思考題,也要認真完成。如果不會決不能輕易放棄,要發揚「釘子」精神,一有空就靜心思考,靈感總是突然來到你身邊的。最重要的是,這是一次挑戰自我的機會。成功會帶來自信,而自信對於學習理科十分重要;即使失敗,這道題也會給你留下深刻的印象。
勤思考,多提問
首先對於老師給出的規律、定理,不僅要知「其然」還要「知其所以然」,做到刨根問底,這便是理解的最佳途徑。其次,學習任何學科都應抱著懷疑的態度,尤其是理科。對於老師的講解,課本的內容,有疑問應盡管提出,與老師討論。總之,思考、提問是清除學習隱患的最佳途徑。
總結比較,理清思緒
(1)知識點的總結比較。每學完一章都應將本章內容做一個框架圖或在腦中過一遍,整理出它們的關系。對於相似易混淆的知識點應分項歸納比較,有時可用聯想法將其區分開。
(2)題目的總結比較。同學們可以建立自己的題庫。我就有兩本題集。一本是錯題,一本是精題。對於平時作業,考試出現的錯題,有選擇地記下來,並用紅筆在一側批註注意事項,考試前只需翻看紅筆寫的內容即可。我還把見到的一些極其巧妙或難度高的題記下來,也用紅筆批註此題所用方法和思想。時間長了,自己就可總結出一些類型的解題規律,也用紅筆記下這些規律。最終它們會成為你寶貴的財富,對你的數學學習有極大的幫助。
有選擇地做課外練習
課余時間對我們中學生來說是十分珍貴的,所以在做課外練習時要少而精,只要每天做兩三道題,天長日久,你的思路就會開闊許多。
小升初數學重點知識的復習方法三:
第一,考生要學會構建知識脈絡
這樣一方面便於對整個數學的知識節點梳理,另一方面有利於加深對重點知識的印象。對於小升初數學來講,數學概念十分重要,它是構建知識網路的出發點,也是數學中考考查的重點。因此,一對一輔導學思堂教育強調,各位小升初的考生在開學期間一定要確保自己掌握好代數和幾何中各種概念、分類,定義、性質和判定,並會應用這些概念去解決問題。
第二,是時刻立足於課本,夯實基礎知識
對於任何一門科目的復習來說,立足於課本基礎知識都是最基本也是最重要的一個環節。一對一輔導學思堂教育在小升初數學方面有豐富教研經驗的楊老師稱,在小升初復習數學的過程中,不但要夯實基礎,還要注意知識的不斷深化,注意知識之間的內在聯系,將新知識及時納入已有知識體系,逐步形成和擴充知識結構系統,這樣在解題時就能由題目所提供的信息,從記憶系統中檢索出有關信息,尋找最佳解題途徑。
第三,要善於建立錯題集
對於數學來講,重點就是對平時錯題一個反復整理研究。想要吃透每個知識點,這就要求大家一定要把平時犯的錯誤記下來,揭示出錯誤的原因,強化知識點的同時,還能拓寬個人的解題思維。尤其是在開學這個能夠集中進行自我復習的階段,經常地把錯題集拿出來看看,想想錯在哪裡、怎麼改正等等,能夠有效幫助自己積累解題經驗、總結解題思路,掌握學習方法。 第四,加強對數學常用公式的記憶與巧用
曾有一篇報道揭示稱:小升初數學考試,有將近百分之七十的題都是立足於數學常用公式,即使是剩下的百分之三十也是公式的不規則運用而已。所以,加強對常用數學公式的運用,對於解題來說是事半功倍的,再加上巧妙的運用,復習效果一定高品質。
第四,是適當有效的多做題
多做題不僅可以拓寬學生的解題思維,還能潛移默化的提高解題速度。一對一輔導學思堂教育揭示,小升初學生在做題時應該注意以下幾點:除了做基礎訓練題、平面幾何每日一題外,還可以做一些綜合題,並且養成解題後反思的習慣;反思自己的思維過程,反思知識點和解題技巧,反思多種解法的優劣和縱橫聯系;總結所用到的數學思想方法,並把思想方法相近的題目編成一組,不斷提煉深化,做到舉一反三、觸類旁通;逐步學會觀察、試驗、分析、猜想、歸納、類比、聯想等思想方法,主動地發現問題和提出問題。
由於篇幅所限,家長可以到我朋友圈去看更多教育文章,我是中學老師,致力於學習法和記憶法教學,開設免費課程。
小升初數學重點知識的復習方法四:
一、注重指導學生復習方法,提高復習效率
1、指導學生巧復習
數學學習中概念,公式,計算等等是很枯燥的。俗話說:「熟能生巧。」良好的復習方法是提高復習效率的重要途徑。利用一切有效手段充分調動學生復習的主動性,創造性知識和技能。教師指導復習時要做到四點:第一是定調。給出復習「導引單」,學生依「綱」復習,掌握基本的知識和技能。第二是給法。對復習方法給予具體指導。善於抓住重點組織復習。第三是樹靶。對復習中的疑難問題展開辨論,審視真偽。第四是立樣。對辨論的結果給出是與否的肯定回答,澄清模糊認識,樹立正確觀點。
2、指導學生定好學習計劃
復習前,教師應當認真鑽研新《課程標准》和小學數學復習指導說明,讓學生明確畢業考試的方向、內容和題形,明確復習內容,指導學生合理分配復習時間,根據每個學生的實際情況,確定復習進度。這樣讓學生心中有譜,克服盲目性,積極的投入到復習中去。
首先我們用一半的時間指導學生復習課本的內容,重在復習教材中的重點、難點、考點和疑點。方法是教師指導與學生自主復習相結合。學生在復習中注重查漏補缺,教師注重解疑和檢查。在復習中注重發現學生在綜合練習中出現的問題、及時檢查學生知識掌握情況及對知識的運用的能力。並要做到及時反饋、及時補缺補差,把遺漏點降到最低。然後用四分之一的時間進行階段復習,把內容相關的單元內容分項復習。比如:數的復習,幾何知識的復習等等。結合不同的復習內容。確定不同的復習重點難點 分類整理、梳理,強化復習的系統性。這樣有利於知識的系統化和對其內在聯系的把握,便於融合貫通。做到梳理--訓練--拓展,有序發展,真正提高復習的效果。最後用四分之一的時間進行綜合復習,各種題型,等等全面開展訓練。在每一次綜合復習中學生的能力呈現螺旋上升狀態。
3. 指導學生摸索技巧與規律,提高能力
能力測試是現代數學測試的主要方面,如實踐能力。創新能力。等。因此在復習過程中,要指導學生定期做一些計算練習及創新練習。知道學生抓住解題的關鍵條件及應用題中的數學關系,歸納出規律和方法;指導學生排除障礙;對一些看似復雜的難題,引導學生斬枝去葉,找出其核心部分,更快,更准地對題意進行理解,從而有效地完成規定的答題。在這一過程中,提醒學生切勿死記硬背,重在開闊視野,培養實踐能力,摸索技巧與規律。
二、 注重研究教法,讓復習省時、高效
1 . 准確處理好集中教學與精講的關系
「集中教學是強化教學,它集中思想、集中時間、集中一切手段與方法,創造環境與條件,突破難點,帶動全面」。根據這一原則,我覺得應該擺脫原有知識體系的束縛,打破原有知識結構,重新調整、編輯知識體系,將那些基礎知識重新編排、重新組合。通過超前集中、隨機集中、綜合集中,以及啟發、引導、討論、歸納、綜合等一系列雙邊活動使知識點、熱點、重點具體化。這即夯實了基礎,突出了重點,又給了學生新的感受。
精講是指對學生自主學習的積極引導,尤其是針對前面的自主復習活動和討論過程中思而不解或有誤的問題進行講解,目的在於掃除學生的學習障礙,指引學習的途徑,培養正確的學習方法。復習中選擇一些恰當、新視覺、最能體現復習內容本質特徵、喚起學生思維靈感而引起思維共鳴的例題而施教,達到溫故而知新。擇例時要做到「三性」。一是准確性;符合新課程標准和教材要求,謹防過深或過偏而加重學生過重的課業負擔;二是典範性:體現重要知識點,其有「範例」作用;三是綜合性:體現各類知識的橫向聯系,培養學生綜合解題能力。一般而言,復習時應精選學生平時漏缺的知識,精選學生易混淆的知識,精選帶有關鍵性、規律性的知識。
2.教師要准備好每一堂課
不管是復習基礎知識,還是復習重點,難點及要點;也不管是專題訓練,還是試卷評講,教師都要對所授內容認真分析, 精心准備。教師要在課下仔細鑽研教材與新《課程標准》,要把握教材內容,善於提煉和歸納教材的知識要點和訓練重點,要把握准知識的廣度與深度。在復習過程中,我們應重視對教材的使用,切不可拋開教材,大搞所謂的「標准化訓練」,盲目追求學生能力的提高,輕視對基礎知識的復習。
3. 精心編排練習題
我們應該把這一點作為重要的一點提出來,我覺得精心編排練習題是實施教學論斷和反饋的好辦法。要堅持每天布置適量的習題作業,從作業中發現問題,並且引導學生集體討論,利用課余時間針對問題進行個別糾正,這一方法行之有效。較好地貫徹了「因才施教」,易於操作,效果明顯,復習中配以靈活多變的訓練,能達到鞏固知識、理解規律、強化記憶、靈活應用知識的目的。首先在訓練的內容上要活。要選擇內容新穎、規律隱藏、思路靈活的習題訓練,創造新的思維意境。其次,在訓練層次上要活。採取鞏固訓練、模仿訓練、變式訓練和綜合訓練等靈活方式。再次在訓練形式上要活。加強「一題多變」的訓練。盡可能覆蓋知識點、網路知識線、擴大知識面,增強應變能力。加強「一題多解」的訓練,尋找多種解題途徑,擇其精要解題方法,逐步提離學生的創新能力。練習題不在於多,一道好的題目,往往能「牽一發而動全身」,起到事半功倍的作用。這里指的練習題也不僅僅指動筆的書面作業題,還包括動口的討論題和動手的實踐操作題等。要在眾多的復習資料中挑選和重心組織質量高、針對性較強的題目(題組),要重視根據教學實際和當前的教改形勢創造設計一些新穎的題目。
4.充分相信學生,放手讓學生自主整理復習,及時評價
復習課必須針對知識的重點、學習的難點、學生的弱點,引導學生按一定的標准把有關知識進行整理、分類、綜合,這樣才能搞清楚來龍去脈。教學時應放手讓學生整理知識,形成各異、互助評價,開展爭辨。這樣有利於主體性的發揮,學生主動參與,體驗成功,同時也可以培養他們的概括能力。在進行階段性復習時,結合每一單元的內容進行專項訓練,採用自主復習的形式,反復鞏固基礎知識,強化運用能力,提高解題技巧和解題速度。學生不但可以自己查閱資料,收集信息,獨立式學習,還可以自由選擇學習內容與方式,自己控制學習進度和方向。自始至終積極參與活動,成為真正意義上學習的主人。
另外,總復習期間,六年級數學組教師在每一節課之前互相研究每節課怎樣上,如何組織,採用何種方法,在上完每節課後,要用較少的時間及時交流課堂中的疑難點,處理方法,讓教師迅速成長。在學生方面,值得一提的是通過開展「四自」活動:自訂一本數學改錯本,自製一本數學筆記,自辦一期數學小報,自出一份期末試卷,並進行交流、評比,讓學生充分享受成功的喜悅,以不斷的成功提高復習效果。
總而言之, 採用自主復習的形式,可以讓「能飛的飛起來」,「能跑的跑起來」,「能走的走起來」,使不同層次的學生都有所提高。小學畢業的最後階段,就象長跑運動員最後的沖刺階段,教師要及早精心安排,使學生的能量充分的發揮出來,才能得到最滿意的結果。

Ⅲ 北師大版小升初數學知識點

考點1 簡易方程
一. 用字母表示數
1. 含有字母的式子不僅可以表示數量關系,也可以表示數量。
2. 含有字母的式子還可以簡明、概括地表達運算定律和計算公式,方便研究和解決實際問題。
3. 如果知道給出的式子中每個字母表示的數是多少,就可以算出這個這個式子表示的數值是多少。
注意:
1.含有字母的式子中,數字和字母、字母和字母相乘時,乘號也可以記作「•」,也可以省略不寫。在省略乘號的時候,應把數字寫在字母的前面。例如:a×4可以寫成「a•4」或「4a」。
2.當「1」和任何字母相乘時,「1」可以省略不寫。例如:a×1都寫成「a」而不寫成「1a」。
3.由於字母可以表示任意數,在一些式子中,對字母表示數的要進行說明。例如:7/a(a≠0)。
4.因為字母表示的是數,所以在式子中每一個字母都不註明單位名稱,計算結果也不註明單位名稱,只在答句中寫上單位名稱。
二. 簡易方程
1. 表示相等關系的式子叫做等式。
2. 含有未知數的等式叫方程
3.一個等式由「等式的左邊」、「等式的右邊」、「等號」三部分組成。例如:23+30=53,x+6=12都是等式。7+8、4x-2、x-7﹥9等都不是等式。在x+6=12這個等式中,因為含有未知數,所以它是方程。等式不一定是方程,但方程一定是等式。它們的關系如下圖所示:

4.使方程左右兩邊相等的未知數的值叫做方程的解。如:x=10,使方程4x-10=30左右兩邊相等,所以x=10就是方程4x-10=30的解。
5.求方程的解的過程叫做解方程。
6.方程的解是一個值,解方程是求方程的解的演算過程。
7.在小學階段解簡易方程主要運算用加、減、乘、除法互逆的關系。
關系如下:
(1) 一個加數=和-另一個加數
(2) 被減數=差+減數
(3) 減數=被減數-差
(4) 一個因數=積÷另一個因數
(5) 被除數=商×除數
(6) 除數=被除數÷商
8.求出未知數的值分別代入原方程的兩邊(即求含有字母的式子的值),如果原方程等號左右兩邊相等,則所求得的未知數的值是原方程的解。

考點二 比和比例
知識要點
一.比和比例的意義和性質
1.比和比例的意義:
(1)兩個數相除又叫做這兩個數相比。
(2)這里的兩個數,可以是同類量,也可以是不同類量。
(3)表示兩個比相等的式子叫做比例.
2.基本性質:
(1)比的前項和後項同時乘或除以相同的數(零除外),比值不變。在比例里,兩個內項的積等於兩個外項的積。
3.比和比例的聯系和區別:
(1)聯系:
比和比例有密切的聯系,比例由兩個相等的比組成。
(2)區別:
比表示兩個數相處,表述的是兩個數(量)關系的一種形式。有兩項(前項和後項)。
比例是一個等式,表示兩個比相等。有四項(兩個內項、兩個外項)。
二.比、分數和除法的關系
名 稱 意 義 各部分名稱(相互關系)
比a :b或
a
b 表示兩個數相除 前 項 比 號 後 項 比 值
a
b 表示一個數 分 子 分數線 分 母 分數值
除法
a÷b 表示一種運算 被除數 除 號 除 數 商
1. 比的後項、分母、除數都不能為0.
2. 比和平常比賽中的「幾比幾」的意義不同。
3. 求比值和化簡比的區別與聯系
意 義 方 法 結 果
求比值 前項除以後項所得的商 用前項除以後項 一個數,可以是整數、分數或小數

化簡比 把兩個數的比化成最簡單的整數比。 1. 前項和後項同時乘或除以同一個數(零除外)
2. 也可以先求出比值,再將比值寫成最簡比
一個比
三. 組比例和解比例
根據比例的基本性質,可以判斷兩個比能不能組成比例,還可以求比例中的未知數,即解比例。
1.組比例:判斷兩個比能否組成比例,一種方法是求兩個比的比值,若比值相等,就可以組成比例;另一種方法是先假設兩個比已經組成比例,求出外項的積和內項的積,如果相等,則能組成比例。
2.解比例:求比值中的未知數,叫做解比例。
四. 正比例和反比例的區別和聯系
名 稱 正 比 例 反 比 例
意 義 相 同 點 兩種相關聯的量,一個量變化,另一個量也隨著變化
不 同 點 兩種量中相對應的兩個數的比值(也就是商)一定 兩種量中相對應的兩個數的積一定
關 系 式 x/y=k(一定) x•y=k(一定)
1. 判斷兩種量是正比例、反比例或不成比例的方法:
(1) 找出兩種相關聯的量。
(2) 根據兩種相關聯的量之間的關系列出數量關系式。
(3) 如果兩種量中相對應的兩個數的比值(也就是商)一定,就是成正比例的量;若是積一定,就是成反比例的量。
五. 比例尺
1. 圖上距離和實際距離的比,叫做這幅圖的比例尺。
即:圖上距離﹕實際距離=比例尺
圖上距離/實際距離=比例尺

Ⅳ 小升初數學整數和小數的應用知識點

小升初數學整數和小數的應用知識點

在我們平凡的學生生涯里,很多人都經常追著老師們要知識點吧,知識點是知識中的最小單位,最具體的內容,有時候也叫「考點」。掌握知識點是我們提高成績的關鍵!下面是我為大家收集的小升初數學整數和小數的應用知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。

1 簡單應用題

(1) 簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。

(2) 解題步驟:

a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。

b選擇演算法和列式計算:這是解答應用題的中心工作。從題目中告訴什麼,要求什麼著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進行解答並標明正確的單位名稱。

C檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。

2 復合應用題

(1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。

(2)含有三個已知條件的兩步計算的應用題。

求比兩個數的和多(少)幾個數的應用題。

比較兩數差與倍數關系的應用題。

(3)含有兩個已知條件的兩步計算的應用題。

已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。

已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。

(4)解答連乘連除應用題。

(5)解答三步計算的應用題。

(6)解答小數計算的應用題:小數計算的加法、減法、乘法和除法的應用題,他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。

d答案:根據計算的結果,先口答,逐步過渡到筆答。

( 3 ) 解答加法應用題:

a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。

b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。

(4 ) 解答減法應用題:

a求剩餘的應用題:從已知數中去掉一部分,求剩下的部分。

-b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。

c求比一個數少幾的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數是多少。

(5 ) 解答乘法應用題:

a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。

b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。

( 6) 解答除法應用題:

a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。

b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。

C 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。

d已知一個數的幾倍是多少,求這個數的應用題。

(7)常見的數量關系:

總價= 單價×數量

路程= 速度×時間

工作總量=工作時間×工效

總產量=單產量×數量

3典型應用題

具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。

(1)平均數問題:平均數是等分除法的發展。

解題關鍵:在於確定總數量和與之相對應的總份數。

算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。

加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。

數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。

差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。

數量關系式:(大數-小數)÷2=小數應得數最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。

例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。

分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的'路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)

(2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。

根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。

根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。

一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」

兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」

正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。

反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。

解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。

數量關系式:單一量×份數=總數量(正歸一)

總數量÷單一量=份數(反歸一)

例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?

分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。

特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。

數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量單位數量×單位個數÷另一個單位數量= 另一個單位數量。

例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?

分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。

解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。

解題規律:(和+差)÷2 = 大數大數-差=小數

(和-差)÷2=小數和-小數= 大數

例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?

分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)

(5)和倍問題:已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。

解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。

解題規律:和÷倍數和=標准數標准數×倍數=另一個數

例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?

分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。

列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)

(6)差倍問題:已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。

解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。

例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?

分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。

(7)行程問題:關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。

解題關鍵及規律:

同時同地相背而行:路程=速度和×時間。

同時相向而行:相遇時間=速度和×時間

同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。

同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。

例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?

分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。

已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)

(8)流水問題:一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。

船速:船在靜水中航行的速度。

水速:水流動的速度。

順水速度:船順流航行的速度。

逆水速度:船逆流航行的速度。

順速=船速+水速

逆速=船速-水速

解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。

解題規律:船行速度=(順水速度+ 逆流速度)÷2

流水速度=(順流速度逆流速度)÷2

路程=順流速度× 順流航行所需時間

路程=逆流速度×逆流航行所需時間

例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?

分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。

(9) 還原問題:已知某未知數,經過一定的四則運算後所得的結果,求這個未知數的應用題,我們叫做還原問題。

解題關鍵:要弄清每一步變化與未知數的關系。

解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。

根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。

解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。

例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?

分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)

一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。

(10)植樹問題:這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。

解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。

解題規律:沿線段植樹

棵樹=段數+1棵樹=總路程÷株距+1

株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)

沿周長植樹

棵樹=總路程÷株距

株距=總路程÷棵樹

總路程=株距×棵樹

例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。

分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈虧問題:是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。

解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。

解題規律:總差額÷每人差額=人數

總差額的求法可以分為以下四種情況:

第一次多餘,第二次不足,總差額=多餘+ 不足

第一次正好,第二次多餘或不足 ,總差額=多餘或不足

第一次多餘,第二次也多餘,總差額=大多餘-小多餘

第一次不足,第二次也不足, 總差額= 大不足-小不足

例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?

分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年齡問題:將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。

解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。

例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?

分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)雞兔問題:已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題

解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。

解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數

兔子只數=(總腿數-2×總頭數)÷2

如果假設全是兔子,可以有下面的式子:

雞的只數=(4×總頭數-總腿數)÷2

兔的頭數=總頭數-雞的只數

例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?

兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)

雞的只數 50-35=15 (只)

(4)小升初數學考點知識總結擴展閱讀:

計演算法則【整數、小數、分數】:

一、計算整數加、減法要把相同數位對齊,從低位算起。

二、計算小數加、減法要把小數點對齊,從低位算起。

三、小數乘法:

1、先按整數乘法算出積是多少,看因數中一共有幾位小數,就從積的右邊起數出幾位,點上小數點。

2、注意:在積里點小數點時,位數不夠的,要在前面用0補足。

四、小數除法:

1、商的小數點要和被除數的小數點對齊。

2、有餘數時,要在後面添0,繼續往下除。

3、個位不夠商1時,要在商的整數部分寫0,點上小數點,再繼續除。

4、把除數轉化成整數時,除數的小數點向右移動幾位,被除數的小數點也要向右移動幾位。

5、當被除數的小數位數少於除數的小數位數時,要在被除數的末尾用0補足。

五、一個小數乘10、100、1000等只要把這個小數的小數點向右移動一位、兩位、三位等。

六、一個小數除以10、100、1000等只要把這個小數的小數點向左移動一位、兩位、三位。

;

Ⅳ 小升初考前三天數學知識點歸納

小升初考前三天數學知識點歸納

下面是各考點方法以及要點匯總

一、代數簡單考點

1、大數的讀寫

先說「讀」:可分為三讀兩不讀

三讀:①每級開頭零要讀例:80800------讀「八萬零八百」

②同級兩非零數之間的零要讀例8080------讀「八千零八十」

③萬級全為零要讀例:800008000------讀「八億零八千」

兩不讀:①每級末尾零不讀例:808000------讀「八十萬八千」

②末尾全是零不讀例:80000-----讀「八萬」

我們接著看「寫」:

在「寫」當中需要注意兩個點:一是「四捨五入」;二是「單位換算」

在題目中若提到「約、近似、精確、保留到」則必定考的是四捨五入

在題目中提到「改寫」則必定考的.是單位換算

2、比例尺

比例尺的題目比較簡單,考點往往在於單位換算

3、統計圖

①條形統計圖

②扇形統計圖

統計圖在526考試中的難度不會太大,只需要弄清楚每種統計圖中各種圖像的意義。希望大家及時結合平時的學習資料好好復習。

4、找規律

找規律的題型比較靈活,我們就不舉實例。但本質都可以分為數字規律和圖形規律。不管什麼規律都是從簡入手、化形為數…。

5、生活中的常識

在526中肯定會考察一些生活常識問題,但這都是和同學們的成長息息相關的,也沒有突擊口,做到相信自己的判斷就行了。

二、幾何考點

1、平面幾何

①求數線段、求總長

以526工大附中沖刺班講義中的一道題目為例:

`AKB4CIS26(95P7_[M[Z9CQ.jpg

②求面積

常見模型:

一半模型、共高模型、蝴蝶模型等

基本方法:

加減、切分、割補、平移、差不變等

下面是526工大沖刺班講義中的幾道典型例題,可供大家參考突擊

更多具體復習題還需要大家多參照平時學習的例題和練習題。

③幾何與運動:點的運動、圖形的運動

2、立體幾何

立體幾何可分為一以下幾種考點:

①求表面積

②求體積(具體分為:等體積變換、切分與拼合、堆積體)

③三視圖

④正方體的折疊與展開

⑤最短路線問題(具體分為:長方體、正方體、圓柱)

三、應用題

1、分數應用題

主要方法:量率對應、轉化單位1、抓不變數

2、經濟利潤應用題

主要方法:設數、列方程

3、經典應用題

主要題型:平均數、和差倍、雞兔同籠、盈虧、年齡、植樹、行程(行程問題考的可能性不大)

;