當前位置:首頁 » 基礎知識 » 初一數學知識點復習重點歸納
擴展閱讀
送同學小禮物送什麼 2025-02-02 09:53:46
k線基礎知識什麼是k線 2025-02-02 09:48:57

初一數學知識點復習重點歸納

發布時間: 2024-12-14 11:36:42

1. 七年級數學的知識點歸納總結

學習的成功與失敗原因是多方面的,要首先從自己身上找原因,才能受到鼓舞,找出努力的方向。每一門科目都有自己的 學習 方法 ,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初一下冊數學知識點 總結

1、單項式:數字與字母的積,叫做單項式。

2、多項式:幾個單項式的和,叫做多項式。

3、整式:單項式和多項式統稱整式。

4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。

6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、補角:兩個角的和為180度,這兩個角叫做互為補角。

8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、同位角:在「三線八角」中,位置相同的角,就是同位角。

10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、全等圖形:兩個能夠重合的圖形稱為全等圖形。

18、變數:變化的數量,就叫變數。

19、自變數:在變化的量中主動發生變化的,變叫自變數。

20、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

21、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。

22、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。

初一下冊數學知識點總結北師大版

一、同底數冪的乘法

(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:

a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;

b)指數是1時,不要誤以為沒有指數;

c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;

二、冪的乘方與積的乘方

三、同底數冪的除法

(1)運用法則的前提是底數相同,只有底數相同,才能用此法則

(2)底數可以是具體的數,也可以是單項式或多項式

(3)指數相減指的是被除式的指數減去除式的指數,要求差不為負

四、整式的乘法

1、單項式的概念:由數與字母的乘積構成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。單項式的數字因數叫做單項式的系數,所有字母指數和叫單項式的次數。

如:bca22-的系數為2-,次數為4,單獨的一個非零數的次數是0。

2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數項的次數叫多項式的次數。

五、平方差公式

表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等於這兩個數的平方差,這個公式就叫做乘法的平方差公式

公式運用

可用於某些分母含有根號的分式:

1/(3-4倍根號2)化簡:

六、完全平方公式

完全平方公式中常見錯誤有:

①漏下了一次項

②混淆公式

③運算結果中符號錯誤

④變式應用難於掌握。

七、整式的除法

1、單項式的除法法則

單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式。

注意:首先確定結果的系數(即系數相除),然後同底數冪相除,如果只在被除式里含有的字母,則連同它的指數作為商的一個因式。

七年級數學學習知識點

一元一次方程

一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).

一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).

一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).

列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間;

(2)工程問題:工作量=工效·工時;

(3)比率問題:部分=全體·比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題:售價=定價·折·0.1 ,利潤=售價-成本;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=1/3πR2h.


七年級數學的知識點歸納總結相關 文章 :

★ 初中七年級數學知識點歸納整理

★ 初一數學知識點歸納梳理

★ 七年級數學知識點整理大全

★ 七年級數學知識點大全

★ 初一數學知識點歸納與學習方法

★ 七年級數學知識點總結

★ 初一數學學習方法指導與學習方法總結

★ 人教版初一數學知識點整理

★ 初一數學上冊知識點歸納

★ 初一數學的知識點歸納

2. 初一數學重要知識點整理

這篇文章給大家分享初一數學重要知識點,主要包括有理數、一元一次方程、不等式等,接下來看一下具體內容。

初一數學重要知識點

(一)有理數

(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線 叫做數軸。

(3)相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

(4)絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(5)有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

(6)有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0. 例:0×1=0

(7)有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

(8)有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

(二)一元一次方程

(1)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫做方程。

(2)一元一次方程

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(3)等式的性質

①等式兩邊同時加上(或減去)同一個整式,等式仍然成立。

若a=b

那麼a+c=b+c

②等式兩邊同時乘或除以同一個不為0的整式,等式仍然成立。

若a=b

那麼有a·c=b·c或a÷c=b÷c (c≠0)

③等式具有傳遞性。

若a1=a2,a2=a3,a3=a4,……an=an,那麼a1=a2=a3=a4=……=an

(3)解方程式的步驟

解一元一次方程的步驟:去分母、去括弧、移項、合並同類項、未知數系數化為1。

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1。

(三)不等式與不等式組

(1)不等式

用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

(2)不等式的性質

①對稱性;

②傳遞性;

③加法單調性,即同向不等式可加性;

④乘法單調性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可開方;

(3)一元一次不等式

用不等號連接的,含有一個未知數,並且未知數的次數都是1,未知數的系數不為0,左右兩邊為整式的式子叫做一元一次不等式。

(4)一元一次不等式組

一元一次不等式組是由幾個含有同一個未知數的一元一次不等式組成的不等式組。

3. 初一數學學霸筆記重點內容 都是精髓!

初中生學習數學要注意重點知識點的整理,下面我為大家總結了初一數學學霸筆記重點內容,僅供大家參考。

有理數法則

1、有理數的加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值;一個數同0相加,仍得這個數。由此可得,互為相反數的兩數相加的0;三個數相加先把前兩個數相加,或先把後兩個數相加,和不變。

2、 有理數 的減法法則:減去一個數等於加上這個數的相反數。注意:一切加法和減法運算都可以統一成加法運算。

3、有理數的乘法法則:兩數相乘,同號得正,異號得負,絕對值相乘。任何數同零相乘都得零。

4、有理數的除法法則:兩數相除,同號得正,異號得負,並把絕對值相除。零除以任何一個不為零的數都得零。

解一元一次方程的步驟

①去分母,在方程的兩邊都乘以各分母的最小公倍數,注意不要漏乘不含分母的項,分子為多項式的要加上括弧;

②去括弧,一般先去小括弧,再去中括弧,最後去大括弧,注意不要漏乘括弧里的項,當括弧前是「-」時,去掉括弧時注意括弧內的項都要變號;

③移項,將含有未知數的項移到方程的一邊,不含未知數的項移到方程的另一邊,注意移項要變號,移項和交換位置不同;

④合並同類項,將同類項合並成一項,把方程化為ax=b(a≠0) 的形式,注意只合並同類項的系數;

⑤系數化為1,在方程ax=b的兩邊都除以a,求出方程的解x= ,注意符號,不要把方程ax=b的解寫成x= 。

直線平行的條件

兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。

兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側,這樣的兩個角叫做內錯角。

兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內角。

判定兩條直線平行的方法:

方法1 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

方法2 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

方法3 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

以上就是我為大家總結的初一 數學學霸筆記 重點內容,僅供參考,希望對大家有所幫助。

4. 初一下學期數學知識點總結歸納

初一下冊數學中,實數,相交線與平行線,不等式是重點,我整理了一些重要的知識點。

實數的相關概念

1、相反數

(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.

(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關於原點對稱.

(3)互為相反數的兩個數之和等於0.a、b互為相反數a+b=0.

2、絕對值|a|≥0.

3、倒數

(1)0沒有倒數

(2)乘積是1的兩個數互為倒數

4、平方根

(1)如果一個數的平方等於a,這個數就叫做a的平方根,一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根。

(2)一個正數a的正的平方根,叫做a的算術平方根。

5、立方根

如果x3=a,那麼x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.

相交線

對頂角相等。

過一點有且只有一條直線與已知直線垂直。

連接直線外一點與直線上各點的所有線段中,垂線段最短。

平行線

1、經過直線外一點,有且只有一條直線與這條直線平行。

2、 如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

3、直線平行的條件:

4、兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行 兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行(內錯角相等,兩直線平行)。

5、兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行(同旁內角互補,兩直線平行)。

平行線的性質

1、兩條平行線被第三條直線所截,同位角相等(兩直線平行,同位角相等)。

2、兩條平行線被第三條直線所截,內錯角相等(兩直線平行,內錯角相等)。

3、兩條平行線被第三條直線所截,同旁內角互補(兩直線平行,同旁內角互補)。 判斷一件事情的語句,叫做命題(本考點可能會出現在填空題中命題的改寫和選擇題中判斷命題的真假性)。

不等式

1、用小於號或大於號表示大小關系的式子,叫做不等式。

2、使不等式成立的未知數的值叫做不等式的解。

3、能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集。

4、含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。

5、不等式的性質:

不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。

不等式兩邊乘(或除以)同一個正數,不等號的方向不變。

不等式兩邊乘(或除以)同一個負數,不等號的方向改變。

三角形中任意兩邊之差小於第三邊。

三角形中任意兩邊之和大於第三邊。

以上是我整理的初一下冊數學的知識點,希望能幫到你。

5. 初中七年級數學知識點歸納整理

數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中 七年級數學 知識點歸納,供大家閱讀參考。

初中七年級數學知識點歸納

第一章 相交線與平行線

一、知識框架

二、知識概念

1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

4.平行線:在同一平面內,不相交的兩條直線叫做平行線。

5.同位角、內錯角、同旁內角:

同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

內錯角:∠2與∠6像這樣的一對角叫做內錯角。

同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。

6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

8.對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。

9.定理與性質

對頂角的性質:對頂角相等。

10垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

11.平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

12.平行線的性質:

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內錯角相等,兩直線平行。

判定3:同旁內角相等,兩直線平行。

本章使學生了解在平面內不重合的兩條直線相交與平行的兩種位置關系,研究了兩條直線相交時的形成的角的特徵,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特徵以及有關圖形平移變換的性質,利用平移設計一些優美的圖案. 重點:垂線和它的性質,平行線的判定 方法 和它的性質,平移和它的性質,以及這些的組織運用. 難點:探索平行線的條件和特徵,平行線條件與特徵的區別,運用平移性質探索圖形之間的平移關系,以及進行圖案設計。

第二章 平面直角坐標系

一.知識框架

二.知識概念

1.有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)

2.平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4.坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。

5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

平面直角坐標系是數軸由一維到二維的過渡,同時它又是學習函數的基礎,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數結合起來,體現了數形結合的思想。掌握本節內容對以後學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發,通過對平面上的點的位置確定發展學生創新能力和應用意識。

第三章 三角形

一.知識框架

二.知識概念

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

12.公式與性質

三角形的內角和:三角形的內角和為180°

三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

多邊形的外角和:多邊形的內角和為360°。

多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

(2)n邊形共有 條對角線。

三角形是初中數學中幾何部分的基礎圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發現和探索其中的知識奧秘。注重培養學生正確的數學情操和幾何思維能力。

第四章 二元一次方程組

一.知識結構圖

二、知識概念

1.二元一次方程:含有兩個未知數,並且未知數的指數都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。

3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。

4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。

5.消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想。

6.代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。

7.加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法。

本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養學生對概念的理解和完整性和深刻性,使學生掌握好二元一次方程組的兩種解法. 重點:二元一次方程組的解法,列二元一次方程組解決實際問題. 難點:二元一次方程組解決實際問題

第五章 不等式與不等式組

一.知識框架

二、知識概念

1.用符號「<」「>」「≤ 」「≥」表示大小關系的式子叫做不等式。

2.不等式的解:使不等式成立的未知數的值,叫做不等式的解。

3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

5.一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。

7.定理與性質

不等式的性質:

不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。

不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。

不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。

本章內容要求學生經歷建立一元一次不等式(組)這樣的數學模型並應用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創新精神和應用數學的意識。

第六章 數據的收集、整理與描述

一.知識框架

全面調查

抽樣調查

收集數據

描述數據

整理數據

分析數據

得出結論

二.知識概念

1.全面調查:考察全體對象的調查方式叫做全面調查。

2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查。

3.總體:要考察的全體對象稱為總體。

4.個體:組成總體的每一個考察對象稱為個體。

5.樣本:被抽取的所有個體組成一個樣本。

6.樣本容量:樣本中個體的數目稱為樣本容量。

7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。

8.頻率:頻數與數據總數的比為頻率。

9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。

本章要求通過實際參與收集、整理、描述和分析數據的活動,經歷統計的一般過程,感受統計在生活和生產中的作用,增強學習統計的興趣,初步建立統計的觀念,培養重視調查研究的良好習慣和科學態度。

數學考試拿高分的竅門

一、對照法

如何正確理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

二、公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

三、比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

四、分類法

根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。 分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。

怎樣才能學好數學

1.打破沙鍋問到底的執著和溫故知新的毅力,被某個知識點或者某道題難住,就把它擱置,問題越來越多就積重難返了。

2.不會的問題當即解決最好,解決的方法有查資料或者請教他人等;對已經解決的問題和重要知識點,要定期復習,復習時要思考有無更好的方法。

3.學會一題多解,從各個方面來了解題目的含義,鍛煉孩子的變式思維;要敢於創新,老師可在講課過程中故意出錯,讓學生來思考,矯正,使學生處於主動思考的狀態。


初中七年級數學知識點歸納整理相關 文章 :

★ 初一數學知識點梳理歸納

★ 七年級數學知識點整理大全

★ 初一數學的知識點梳理

★ 初一數學知識點歸納梳理

★ 初一數學學習方法總結

★ 初一數學的知識點歸納

★ 初一數學考試知識點總結

★ 數學七年級下冊知識點總結之變數之間的關系

★ 七年級數學上冊知識點總結歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

6. 初一數學的主要知識點都有哪些

初一數學的主要知識點都有哪些

初一數學主要知識點:

代數初步知識

1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式。

2. 幾個重要的代數式:(m、n表示整數)

(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;

(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;

(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .

有理數

凡能寫成q/p(p,q為整數且p≠0)形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0既不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數。

整式的加減

單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

單項式的`系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

多項式:幾個單項式的和叫多項式.

多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.

整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.

一元一次方程

一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).

一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).

一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).

列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間;

(2)工程問題:工作量=工效·工時;

(3)比率問題:部分=全體·比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題:售價=定價·折·0.1 ,利潤=售價-成本;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=1/3πR2h.