『壹』 小學的數學知識點總結歸納
1、數與代數:數的認識、數的運算、式與方程、比和比例。
2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。
3、統計與可能性:量的計量、統計、可能性。
4、實踐與綜合應用:探索規律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。
(1)小學數學三到五年級知識點大全擴展閱讀:
整數
1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。
2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。
3、計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4、數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。
如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
解比例的依據是比例的基本性質。
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化法。
16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數:公因數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公因數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。
32、一天的時間:一天有24小時,一小時60分,1分60秒
『貳』 小學數學知識點總結歸納大全
小學數學是學生今後學習數學的基礎,所以這個基礎一定要堅實。下面是由我為大家整理的「小學數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。
一年級的知識點及重難點
(一)數與計算
(1)20以內數的認識。加法和減法。
數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合運算。
(2)100以內數的認識。加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。
兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。
(二)量與計量鍾面的認識(整時)。人民幣的認識和簡單計算。
(三)幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
(四)應用題
比較容易的加法、減法一步計算的應用題。 多和少的應用題(抓有效信息的能力)
(五)實踐活動
選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
二年級的知橋蔽識點和重難點
(一)數與計算
(1)兩位數加、減兩位數。 ? 兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。
(2)表內乘法和表內除法。 ? 乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。
(3)萬以內數的讀法和寫法。 ? 數數。百位、千位、萬位。數的讀法、寫法和大小比較。
(4)加法和減法。 ?加法,減法。連加法。加法驗算,用加法驗算減法。
(5)混合運算。 ? 先乘除後加減。兩步計算式題。小括弧。
(二)量與計量
時、分、秒的認識。
米、分米、厘米的認識和簡單計算。
千克(公斤)的認識
(三)幾何初步知識
直線和線段的初步認識。 ? 角的初步認識。直角。
(四)應用題
加法和減法一步計算的應用題。 ? 乘法和除法一步計算的應用題。 ?比較容易的兩步計算的應用題。
碧悶(五)實踐活動
與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。
三年級知識點和重難點
(一)數與計算
(1)一位數的乘、除法。一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。
(2)兩位數的乘、除法。一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。
(3)四則混合運算。兩步計算的式題。小括弧的使用。
(4)分數的初步認識。分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。
(二)量與計量千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。
(三)幾何初步知識長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。
(四)應用題常見的數量關系。解答兩步計算的應用題。
敏慧州(五)實踐活動聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。
四年級知識點和重難點
(一)數與計算
(1)億以內數的讀法和寫法。
計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。
(2)加法和減法。
加法,減法。
接近整十、整百數的加、減法的簡便演算法。
加、減法算式中各部分之間的關系。求未知數x。
(3)乘、除數是三位數的乘、除法。
乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。
_乘、除計算的簡單估算。
乘數接近整十、整百的簡便演算法。
乘、除法算式中各部分之間的關系。求未知數x。
(4)四則混合運算。
中括弧。三步計算的式題。
(5)整數及其四則運算的關系和運算定律。
自然數與整數。十進制計數法。讀法和寫法。
四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。
運算定律。簡便運算。
(6)小數的意義、性質,加法和減法。
小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值
加法和減法。加法運算定律推廣到小數。
(註:小數如果分段教學,可以把小數的初步認識安排在前面的適當年級)。
(二)量與計量
年、月、日。平年、閏年。世紀。24時計時法。
角的度量。
面積單位。
(三)幾何初步知識。
直線的測定。測量距離(工具測、步測、目測)。
射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。
三角形的特徵。_三角形的內角和。
(四)統計初步知識
簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。
(五)應用題列綜合算式解答比較容易的三步計算的應用題。
五年級知識點和重難點
小數乘法,小數除法,簡易方程,多邊形的面積,統計與可能性等是本冊教材的重點教學內容。
在數與代數方面,這一冊教材安排了小數乘法、小數除法和簡易方程。小數的乘法和除法在實際生活中和數學學習中都有著廣泛的應用,是小學生應該掌握和形成的基礎知識和基本技能。這部分內容是在前面學習整數四則運算和小數加、減法的基礎上進行教學,繼續培養學生小數的四則運算能力。簡易方程是小學階段集中教學代數初步知識的單元,在這一單元里安排了用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。
在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置;探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。
在統計與概率方面,本冊教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性;在平均數的基礎上教學中位數,使學生理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。
在用數學解決問題方面,教材一方面結合小數乘法和除法兩個單元,教學用所學的乘除法計算知識解決生活中的簡單問題;另一方面,安排了「數學廣角」的教學內容,通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。培養學生的符號感,及觀察、分析、推理的能力,培養他們探索數學問題的興趣和發現、欣賞數學美的意識。
六年級數學
(一)數與計算
(1)分數的乘法和除法。分數乘法的意義。分數乘法。乘法的運算定律推廣到分數。倒數。分數除法的意義。分數除法。
(2)分數四則混合運算。分數四則混合運算。
(3)百分數。百分數的意義和寫法。百分數和分數、小數的互化。
(二)比和比例
比的意義和性質。比例的意義和基本性質。解比例。成正比例的量和成反比例的量。
(三)幾何初步知識
圓的認識。圓周率。畫圓。圓的周長和面積。_扇形的認識。軸對稱圖形的初步認識。圓柱的認識。圓柱的表面積和體積。圓錐的認識。圓錐的體積。球和球的半徑、直徑的初步認識。
(四)統計初步知識
統計表。條形統計圖,折線統計圖,_扇形統計圖。
(五)應用題
分數四則應用題(包括工程問題)。百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算)。比例尺。按比例分配。
(六)實踐活動
聯系學生所接觸到的社會情況組織活動。例如就家中的卧室,畫一個平面圖。
(七)整理和復習
拓展閱讀:小學數學學習方法
1、聽課不僅要聽,還要思考
很多學生在上課時候都能認真聽講,對公式和概念等基礎知識有很深的記憶,但在遇到實際問題的時候卻做不出。因此,學生在課堂上不僅要認真聽講,跟隨老師的思路,還要進行思考,了解解題思路。對於數學學習,最重要的是解題能力和知識運用能力的培養。如果學生只會記憶公式和概念等基礎知識,而不懂怎麼運用這些知識去解答問題,那麼他的數學學習能力是非常差的,學習效率和質量也是非常低下。
2、擴寬解題思路
在數學教學中,老師會引導學生進行思考,從而發現不同的解題思路。因此,學生要利用好這些機會,擴寬解題思路,培養自身的思維能力。通過這些方法,學生可以鍛煉思維能力和應變能力,學會舉一反三,從而提高數學成績。
3、利用好錯題集
在學習過程中,學生難免會做錯題目,這時候要將錯題進行整合歸納,建立錯題集。藉助錯題集,學生可以知道自己錯誤的原因,掌握正確的.解題方法,從而避免再犯同樣的錯誤。此外,學習過程中要經常翻看錯題集,不斷加深印象,從而達到抬升知識短板、彌補知識漏洞的目的。
『叄』 小學數學
1. 小學數學知識重點有哪些
小學數學公式大全,第一部分: 概念。
1,加法交換律:兩數相加交換加數的位置,和不變。 2,加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。 4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。 如:(2+4)*5=2*5+4*5 6,除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
0除以任何不是0的數都得0。 簡便乘法:被乘數,乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7,什麼叫等式 等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什麼叫方程式 答:含有未知數的等式叫方程式。 9, 什麼叫一元一次方程式 答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。 11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分,然後再加減。 12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。 13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。 15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
16,真分數:分子比分母小的分數叫做真分數。 17,假分數:分子比分母大或分子和分母相等的分數叫做假分數。
假分數大於或等於1。 18,帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19,分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。 20,一個數除以分數,等於這個數乘以分數的倒數。
21,甲數除以乙數(0除外),等於甲數乘以乙數的倒數。 分數的加,減法則:同分母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分,然後再加減。 分數的乘法則:用分子的積做分子,用分母的積做分母。
22,什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
23,什麼叫比例:表示兩個比相等的式乎知子叫做比例。如3:6=9:18 24,比例的基本性質:在比例里,兩外項之積等於兩內項之積。
25,解比例:求比例中的未知項,叫做解比例。如3:χ=9:18 26,正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。
如:y/x=k( k一定)或kx=y 27,反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x*y = k( k一定)或k / x = y 28,百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。
百分數也叫做百分率或百分比。 29,把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。
其實,把小數化成百分數,只要把這個小數乘以100%就行了。 30,把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31,把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
32,把百分數化成分數,先把百分數源頃塵改寫成分數,能約分的要約成最簡分數。 33,要學會把小數化成分數和把分數化成小數的化發。
34,最大公約數:幾個數都雹禪能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。
其中最大的一個, 叫做最大公約數。) 35,互質數: 公約數只有1的兩個數,叫做互質數。
36,最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。 37,通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。
(通分用最小公倍數) 38,約分:把一個分數化成同它相等,但分子,分母都比較小的分數,叫做約分。(約分用最大公約數) 39,最簡分數:分子,分母是互質數的分數,叫做最簡分數。
40,分數計算到最後,得數必須化成最簡分數。 41,個位上是0,2,4,6,8的數,都能被2整除,即能用2進行約分。
個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
43,偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
44,質數(素數):一。
2. 給我一個數學小知識,200字左右
零的歷史 數學史家把0稱作「哥倫布雞蛋」,這不僅是因為0的形狀像雞蛋,其中還含有深刻的哲理。
凡事都是開創時困難,有人開了端,仿效是很容易的。0的出現就是一個典型的例子,在發明之前,誰都想不到,一旦有了它,人人都會用簡單的方法來記數。
我們知道,零不僅表示一無所有,它還有以下的一些意義;在位值制記數法中,零表示「空位」,同時起到指示數碼所在位置的作用,如304中的0表示十位上沒有數;零本身還是一個數,可以同其他的數一起參與運算;零是標度的起點或分界,如每天的時間從0時開始。 在古代巴比倫,楔形文字的零號已起到現今位值制中0號的作用,它一方面表示零位,另一方面也指明數碼的位置。
然而他們還沒有把零看作一個數,也沒有將它和「一無所有」這一概念聯系起來。 印度人對零的最大貢獻是承認它是一個數,而不僅僅是空位或一無所有。
婆羅摩笈多對零的運算有較完整的敘述:「負數減去零是負數,正數減去零是正數,零減去零什麼也沒有;零乘負數、正數或零都是零。……零除以零是空無一物,正數或負數除以零是一個以零為分母的分數」。
每一個學過除法的人都知道,零不可以作除數,因為如果a≠0而b=0,那就不可能存在一個C使得bc=a。這個道理盡人皆知,但在得到正確結論之前,卻經歷了漫長的歷史。
我國自古以來就用算籌來記數,早就用算籌來記數,用的是10進位值制。巴比倫知道位值制,但用的是60進制。
印度到公元595年才在碑文上有明確的10進位值制的記數法。位值制必須有表示零的辦法。
起初,中國使用空格來表示零,後來以○表示零,後來印度的0就傳入了中國。 在我們眼裡,零的存在是那麼自然、簡潔,但就是這么一個簡單的零,卻也有這么一段頗不簡單的歷史。
3. 小學數學知識集錦
小學數學復習考試知識點匯總一、小學生數學法則知識歸類(一)筆算兩位數加法,要記三條1、相同數位對齊;2、從個位加起;3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條1、相同數位對齊;2、從個位減起;3、個位不夠減從十位退1,在個位加10再減。(三)混合運算計演算法則1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;2、中間有一個0或兩個0隻讀一個「零」;3、末位不管有幾個0都不讀。(五)四位數寫法1、從高位起,按照順序寫;2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條1、相同數位對齊;2、從個位減起;3、哪一位數不夠減,從前位退1,在本位加10再減。(七)一位數乘多位數乘法法則1、從個位起,用一位數依次乘多位數中的每一位數;2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;2、除數除到哪一位,就把商寫在那一位上面;3、每求出一位商,餘下的數必須比除數小。(九)一個因數是兩位數的乘法法則1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,2、除到被除數的哪一位就在哪一位上面寫商;3、每求出一位商,餘下的數必須比除數小。(十一)萬級數的讀法法則1、先讀萬級,再讀個級;2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。
(十二)多位數的讀法法則1、從高位起,一級一級往下讀;2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。(十三)小數大小的比較比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。(十五)小數乘法的計演算法則計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。(十七)除數是小數的除法運演算法則除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼; 2、確定每一步該怎樣算,列出算式,算出得數;3、進行檢驗,寫出答案。(十九)列方程解應用題的一般步驟1、弄清題意,找出未知數,並用X表示;2、找出應用題中數量之間的相等關系,列方程;3、解方程;4、檢驗、寫出答案。
(二十)同分母分數加減的法則同分母分數相加減,分母不變,只把分子相加減。(二十一)同分母帶分數加減的法則帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。(二十三)分數乘以整數的計演算法則分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。(二十五)一個數除以分數的計演算法則一個數除以分數,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。(二十七)把分數化成百分數和把百分數化成分數的方法把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、小學數學口決定義歸類1、什麼是圖形的周長?圍成一個圖形所。
4. 小學數學知識整理
小學一年級 九九乘法口訣表。
學會基礎加減乘。小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。小學五年級 分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級 比例百分比概率,圓扇圓柱及圓錐。必背定義、定理公式 三角形的面積=底*高÷2。
公式 S= a*h÷2 正方形的面積=邊長*邊長 公式 S= a*a 長方形的面積=長*寬 公式 S= a*b 平行四邊形的面積=底*高 公式 S= a*h 梯形的面積=(上底+下底)*高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和=180度。長方體的體積=長*寬*高 公式:V=abh 長方體(或正方體)的體積=底面積*高 公式:V=abh 正方體的體積=棱長*棱長*棱長 公式:V=aaa 圓的周長=直徑*π 公式:L=πd=2πr 圓的面積=半徑*半徑*π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。
公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等於底面積乘高。
公式:V=Sh 圓錐的體積=1/3底面*積高。公式:V=1/3Sh 分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分,然後再加減。分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。讀懂理解會應用以下定義定理性質公式 一、算術方面1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)*5=2*5+4*56、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。
即例出代有χ的算式並計算。10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面1、單價*數量=總價2、單產量*數量=總產量3、速度*時間=路程4、工效*時間=工作總量5、加數+加數=和 一個加數=和+另一個加數 被減數-減數=差 減數=被減數-差 被減數=減數+差 因數*因數=積 一個因數=積÷另一個因數 被除數÷除數=商 除數=被除數÷商 被除數=商*除數 有餘數的除法: 被除數=商*除數+余數 一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5*6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1噸=1000千克 1千克= 1000克= 1公斤= 1市斤1公頃=10000平方米。
1畝=666.666平方米。1升=1立方分米=1000毫升 1毫升=1立方厘米7、什麼叫比:兩個數相除就叫做兩個數的比。
如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。8、什麼叫比例:表示兩個比相等的式子叫做比例。
如3:6=9:189、比例的基本性質:在比例里,兩外項之積等於兩內項之積。10、解比例:。
5. 小學數學知識
小學數學知識匯總——圖形的周長、面積、體積公式及相關知識
長方形周長 =(長+寬)*2
長方形面積 =長*寬
正方形周長 = 邊長 * 4
正方形面積 = 邊長*邊長
三角形面積 = 底*高÷2
平行四邊形面積 = 底 * 高
梯形面積 = (上底 +下底)*高÷2
圓的周長等於∏*直徑或∏*半徑*2 即C =∏d或C = 2∏r
圓的面積等於3.14*半徑的平方e69da5e887aa7af。
環形的面積等於3.14*(大半徑的平方- 小半徑的平方)
半圓的周長 = 圓的周長的一半 + 直徑 即:∏ r + 2 r
長方體的表面積 = (長*寬 + 長*高 + 寬*高)* 2
長方體的體積 = 長 * 寬 * 高 或 底面積*高
正方體的表面積 = 棱長*棱長* 6
正方體的體積 = 棱長*棱長*棱長
圓柱體的表面積=2個底面積 + 側面積
側面積=底面周長*高
圓柱體的體積 = 底面積 * 高
圓錐體的體積 = 底面積 * 高 ÷ 3
長方體和正方體都有6個面、8個頂點和12條棱。
相交於同一頂點的三條棱分別叫做長方體的長、寬、高。
正方體可以看作是特殊的長方體。
最少需要8個相同的小正方體才能拼成一個大正方體。
圓柱體上下兩個底面都是圓形,而且它們的面積都相等。
圓柱體的側面展開是長方形,它的長是圓柱底面的周長,它的高是圓柱的高。
圓錐的底面也是圓形,側面展開是扇形。
圓柱體的體積是和它等底等高的圓錐體的體積的3倍。
大圓的半徑是小圓的直徑,則大圓的面積是小圓的面積的4倍。
在正方形里剪一個最大的圓,正方形的邊長就是圓的直徑。
在長方形里剪一個最大的圓,長方形的寬就是圓的直徑。
把一個長方形拉成一個平行四邊形以後,面積比原來變小了。
長方形的周長要先除以2,然後再按比例分配;而長方體的棱長總和要先除以4,然後再分配。
圓的半徑擴大3倍,周長也擴大3倍,面積擴大9倍。
正方體的棱長擴大3倍,則表面積擴大9倍,體積擴大27倍。
圓柱體或圓錐體的底面半徑擴大2倍,體積擴大4倍。
常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
條形統計圖的特點是很容易看出各種數量的多少;折線統計圖的特點是不但可以看出各種數量的多少,而且
能夠清楚地表示出數量增減變化的情況;扇形統計圖的特點是可以清楚地表示出各部分數量和總數之間的關系
6. 求數學小知識
最低0.27元/天開通網路文庫會員,可在文庫查看完整內容> 原發布者:妙想甜開 *** 數字 在生活中,我們經常會用到0、1、2、3、4、5、6、7、8、9這些數字。
那麼你知道這些數字是誰發明的嗎? 這些數字元號原來是古代印度人發明的,後來傳到 *** ,又從 *** 傳到歐洲,歐洲人誤以為是 *** 人發明的,就把它們叫做「 *** 數字」,因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做 *** 數字。 現在, *** 數字已成了全世界通用的數字元號。
九九歌 九九歌就是我們現在使用的乘法口訣。 遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。
在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從「九九八十一」起到「二二如四」止,共36句。
因為是從「九九八十一」開始,所以取名九九歌。大約在公元五至十世紀間,九九歌才擴充到「一一如一」。
大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從「一一如一」起到「九九八十一」止。 現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為「小九九」;還有一種是81句的,通常稱為「大九九」。
音樂與數學 動人的音樂常給人以美妙的感受。古人雲:餘音繞梁,三日不絕,這說的是唱得好,也有的人五音不全,唱不成調,這就是唱得不好了。
同樣是唱歌,甚至是唱同樣的歌,給人的感覺卻是。
『肆』 小學數學基礎知識點整理
小學數學知識點有哪些?哪些基礎知識是我們一定要整理的?下面是我為大家整理的關於小學數學基礎知識點整理,希望對您有所幫助。歡迎大家閱讀參考學習!
小學數學基礎知識整理(一到六年級)
小學一年級 初步認識加減法。學會基礎加減。
小學二年級 完善加減法,表內乘法,學會應用題,基礎幾何圖形。
小學三年級 學會萬以內加減法,長度單位和質量單位,倍數的認知,多位數乘一位數,時間量及單位。長方形和正方形幾何圖形、分數的初步認識。
小學四年級 億萬數的認識、面積單位(公頃和平方千米)、角的度量,兩位數的乘數法、平行四邊形和梯形幾何圖形及條形統計圖的了解。
小學五年級 小數乘除法,簡易方程運算,圖形面積計算,可能性和植樹問題了解。
小學六年級 掌握分數乘除法,比和百分數,圓和扇形。
必背定義、定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
定義定理性質公式
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
簡便乘法:被乘數、乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
一般運算規則
1、 每份數×份數=總數總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和和-一個加數=另一個加數
7、 被減數-減數=差被減數-差=減數 差+減數=被減數
8、 因數×因數=積積÷一個因數=另一個因數
9、 被除數÷除數=商被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形 C周長 S面積 a邊長
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 V:體積 a:棱長
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形 C周長 S面積 a邊長
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 V:體積 s:面積 a:長 b: 寬 h:高
表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
體積=長×寬×高 V=abh
5、三角形 s面積 a底 h高
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底三角形底=面積 ×2÷高
6、平行四邊形 s面積 a底 h高
面積=底×高 s=ah
7、梯形 s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 S面積 C周長 πd=直徑 r=半徑
周長=直徑×π=2×π×半徑 C=πd=2πr
面積=半徑×半徑×π
9、圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10、圓錐體 v:體積 h:高 s;底面積 r:底面半徑體積=底面積×高÷3
相關 文章 :
1. 小升初數學基礎知識點順口溜
2. 小學三年級數學學習內容重點知識匯總
3. 小升初數學知識點匯總與常見易錯點
4. 小學數學六年級圓的知識要點解析
5. 六年級上冊數學知識點整理歸納
『伍』 小學各年級數學知識點總結
貪玩是孩子的天性,大多數孩子缺少自我控制能力,所以需要家長們平時多督促孩子認真完成家庭作業,培養他們良好的作業習慣,寫字姿勢。家長督促他們寫作業,及時檢查他們的作業,發現沒學會的知識要及時給他們講解,每天的作業認真完成是學習的基本保障。下面是我為大家整理的關於小學各年級數學知識點 總結 ,希望對您有所幫助。歡迎大家閱讀參考學習!
一年級的知識點及重難點
(一)數與計算
(1)20以內數的認識。加法和減法。
數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合運算。
(2)100以內數的認識。加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。
兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。
(二)量與計量鍾面的認識(整時)。人民幣的認識和簡單計算。
(三)幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
(四)應用題
比較容易的加法、減法一步計算的應用題。 多和少的應用題(抓有效信息的能力)
(五)實踐活動
選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
一年級 數學 學習 方法
1、要培養學生的學習習慣。學習習慣的一方面就是作業的按時完成,作業格式訓練也是學習習慣培養的一個方面。要利用數學練習本讓學生練習寫數和寫算式
2、重視孩子計算能力的培養
口算20以內的加減法是十分重要的基礎知識,孩子必須學好,並能夠達到熟練計算的程度。由於孩子的基礎不同,不同孩子的計算熟練程度和速度也就存在一定差異,要縮小這一差異,僅靠每天一節數學課練習是不客觀的,所以要經常性的練習。一年級要多讓孩子藉助小棒等學具擺一擺、說一說計算思路。
3、依據生活理解數學,讓孩子在游戲中成長
有些數學知識較抽象,容易混淆,我們要注意給孩子創造生活情境,讓孩子在實際體驗中理解知識。如「左右」的認識,分辨左右是孩子本學期學習的一個難點,在生活中強化孩子對左右手的認識,引導孩子藉此來分辨物體間的左右關系。同時還要注意一個參照物的問題,如兩人面對面時,如何判別對面之人的左右邊。
4、重視數學語言發展,讓學生養成積極思維的習慣。 在生活中要多為孩子創設說數學的機會,數學是「思維的 體操 」,如果不積極動腦思考就不可能學好數學。如在學習「10的分與合」時,在復習鋪墊的基礎上,提問:「10可以分成幾和幾呢?」引導學生一邊塗珠算一邊思考,從而自己得出結論。多問幾個「為什麼」比直接告訴學生「是這樣的」要好得多。,學生在相互之間的思維撞擊中學會了知識,獲得了積極的成功體驗。
總之,一年級學生由於特殊的年齡特徵,所以要重視培養學生良好書寫、思維的學習習慣。
二年級的知識點和重難點
(一)數與計算
(1)兩位數加、減兩位數。 ? 兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。
(2)表內乘法和表內除法。 ? 乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。
(3)萬以內數的讀法和寫法。 ? 數數。百位、千位、萬位。數的讀法、寫法和大小比較。
(4)加法和減法。 ?加法,減法。連加法。加法驗算,用加法驗算減法。
(5)混合運算。 ? 先乘除後加減。兩步計算式題。小括弧。
(二)量與計量
時、分、秒的認識。
米、分米、厘米的認識和簡單計算。
千克(公斤)的認識
(三)幾何初步知識
直線和線段的初步認識。 ? 角的初步認識。直角。
(四)應用題
加法和減法一步計算的應用題。 ? 乘法和除法一步計算的應用題。 ?比較容易的兩步計算的應用題。
(五)實踐活動
與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。
二年級數學 學習方法
小學生是以具體形象思維為主,根據二年級學生的特點,應該:
第一:要適度應用學具,例如:在教學乘法的初步認識時,用擺小棒的方法,應按照從一般到特殊的規律,先擺出兩堆不同數目的小棒,再擺出兩份數目相同的,讓學生覺得加法的累贅,再介紹乘法,學生就很容易理解乘法的意義,並且樂意學乘法了。
第二:利用 生活知識 教學。
例如:小紅做了18朵紙花,送給同學們12朵,還剩下多少朵。這是兩位數減兩位數,如果在生活中做一做,學生就明白意思了,所以說,有一些應用題,能從實際生活出發,先用學生的生活 經驗 來解答,再用數學知識來解答,就可以使學生理解題意。
第三:利用社會環境提高數學實際應用能力。例如:在學習統計時,可以帶學生到商城或社會中,利用新學的統計知識,通過觀察、計量、比較,從而收集到有用的信息和知識。
第四:為學生創造機會,使學生去思、去想、去問。比如,二年級教材學習了「角的認識」,對於什麼叫角,角各部分名稱,「角的大小與邊的長短無關」這些內容,學生已經知道了
「還有什麼問題嗎?」學生答道「沒問題」。真的沒問題了嗎?「那我來問個問題」我提出了一個問題:「角的大小為什麼與邊的長短無關呢?」經過討論,大家明白了,角的邊是射線,射線是沒有長短的,所以,角的大小與邊的長短無關。角的大小決定於兩條邊張開的程度。教師從學生的角度示範提問題,久而久之,也就讓學生有了提問題的意識,在引導學生提問題的同時,也培養了學生積極思考問題和解決問題的能力。
三年級知識點和重難點
(一)數與計算
(1)一位數的乘、除法。一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。
(2)兩位數的乘、除法。一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。
(3)四則混合運算。兩步計算的式題。小括弧的使用。
(4)分數的初步認識。分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。
(二)量與計量千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。
(三)幾何初步知識長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。
(四)應用題常見的數量關系。解答兩步計算的應用題。
(五)實踐活動聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。
三年級數學 學習方法
小學三年級學生學習數學的三種數學能力中,影響程度最大的是運用數概念的能力,其次是空間關系的知覺能力,再次是基本能力(概括和推理)。
第一,加強小學三年級學生運用「數概念」的能力培養。
有不少小學數學的教學中,常只重演算法,忽視數概念的掌握和算理的理解。因而只能機械地應用學過的東西,或簡單地模仿做過的例題,不能在變化了情況下遷移;或者只知道一些定義,而不能全面掌握屬於這一概念的東西。
例如,學生能說出什麼是圓的半徑,但在作圖或解題時又常常只能舉出垂直方向上的半徑,不能反轉過來去解決逆向問題,沒有納入到一般的范疇或嵌入數概念體系的認知結構中去。所以在小學數學教學中,不僅要重視演算法和演算過程,尤其要重視數概念的掌握和算理的理解,加強小學生運用數概念的能力培養。三年級數學中,會出現長度單位的認識,什麼千米、毫米、厘米,很多孩子總是無法記清楚,怎麼辦呢?請大家伸出自己的右手,手心面向自己,從小拇指到大拇指,依次為:毫米、厘米、分米、米、千米。兩指之間的距離大小表示進率的大小。你們看,小指、無名指、中指、食指每相臨的兩指間的距離相等,也就表示毫米、厘米、分米、米每相臨兩個單位間的進率相等,都是10。而毫米與分米、厘米與米間的進率為100,毫米與米之間的進率為1000,食指與大拇指之間的距離較大,也是1000。記住單位對應的拇指,這個換算就變得十分簡單而且准確了。
第二,重視和加強發展小學三年級學生「空間關系」的知覺能力。
數和形是不可分開的。因此,學生掌握空間關系的知覺能力也是小學數學能力的重要組成部分。例如三年級下冊如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。
第三,觀察活動:
所謂觀察是指學生對客觀事物或某種現象的仔細察看,因而是一種有意注意。培養的途徑是:教師提供的「客觀事物或某種現象」特徵有序、背景鮮明,而且要給出一些觀察的思考題。這樣有助於學生明確觀察目標,進而使他們邊觀察,邊思考,邊議論,邊作觀察記錄,以發現數學規律、本質。
「乘法分配律」的教學,根據例證得到三個等式:
(5+3)×2=5×2+3×2
(6+4)×30=6×30+4×30
(25+9)×4=25×4+9×4
教師要求學生結合下面的兩個思考題觀察上面的三個等式都具有什麼相同點(即規律)。①豎里觀察,等式的左邊都有什麼特點?等式右邊又有什麼特徵?②橫里觀察,等式的左邊與右邊有怎樣的關系?
教師再要求學生把記錄的文字:兩個加數的和與一個數相乘,兩個積的和,兩個加數分別與一個數相乘……整理一下就得到了「乘法分配律」。
四年級知識點和重難點
(一)數與計算
(1)億以內數的讀法和寫法。
計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。
(2)加法和減法。
加法,減法。
接近整十、整百數的加、減法的簡便演算法。
加、減法算式中各部分之間的關系。求未知數x。
(3)乘、除數是三位數的乘、除法。
乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。
_乘、除計算的簡單估算。
乘數接近整十、整百的簡便演算法。
乘、除法算式中各部分之間的關系。求未知數x。
(4)四則混合運算。
中括弧。三步計算的式題。
(5)整數及其四則運算的關系和運算定律。
自然數與整數。十進制計數法。讀法和寫法。
四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。
運算定律。簡便運算。
(6)小數的意義、性質,加法和減法。
小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值
加法和減法。加法運算定律推廣到小數。
(註:小數如果分段教學,可以把小數的初步認識安排在前面的適當年級)。
(二)量與計量
年、月、日。平年、閏年。世紀。24時計時法。
角的度量。
面積單位。
(三)幾何初步知識。
直線的測定。測量距離(工具測、步測、目測)。
射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。
三角形的特徵。_三角形的內角和。
(四)統計初步知識
簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。
(五)應用題列綜合算式解答比較容易的三步計算的應用題。
四年級數學 學習方法
四年級的學生思維正處在從直觀思維向抽象 邏輯思維 過渡的階段,因此,通過練習鞏固所學知識只是其中的一個方面,而通過比較、概括、推理、綜合等思維方法的學習運用發展其邏輯思維是這個年齡段學生的一個重要任務,除了注意學生思維方法的掌握,最明顯的表現是培養學生畫概念圖和線段圖,促進其知識系統化和思維能力的發展。)
在數學知識中,數學概念又是數學知識的基礎,數學原理、數學方法也是由數學概念構成。概念的清晰性、穩定性、可辨性以及概念之間的關聯性極大地影響數學知識的質量。概念圖包括節點、連線、層級和命題四個基本要素。根據小學四年級學生思維發展水平,引導學生思考如何更好建構自己的概念圖,掌握這種方法。數學知識就像~張縱橫交錯的網,每個知識點都是一個網點,網點上的一條條知識,連接起了一個個的網點,從而形成一張密密的「知識網」。培養學生自己去「織網」能力應該是新課改對教師的要求之一,而且對於小學四年級的教師來說,在學生思維折的關鍵時期,有意識地通過讓學生畫概念圖的方法來培養思維能力也是行之有效的法之一。
「線段圖」是指由有一定意義的線段、箭頭、數字元號等構成的圖式,它的特點是形象直觀,能夠引起學生的注意和興趣。利用線段圖將題中蘊涵的抽象的數量關系以形象、直觀的方式表達出來,化 抽象思維 為形象思維,符合小學生特別是中高年級學生的認知特點。小學數學各種類型的應用題:如分數應用題、行程問題、工程問題等用線段圖扳書分析數量關系,易化繁為簡,化抽象思維為形象思維。四年級教材中的路程問題(第七冊59—61頁),很容易通過例題中的線段圖理解問題。對於第七冊第64頁的習題5,學生們也能輕松地把情景圖用線段圖表示出來;第八冊「解方程一」(第95頁)的練習2,即使學困生也很容易列出方程,我所教的兩個班的學生能把一些方程用線段圖畫出來,比如97頁的練習l、2,通過這種 思維訓練 ,學生的表徵能力得到提高,實現《標准》提出的「能從具體情境中抽象出數量關系和變化規律,並用符號來表示:理解符號所代表的數量關系和變化規律;會進行符號間的轉換;能選擇適當的程序和方法解決用符號所表達的問題。」
五年級知識點和重難點
小數乘法,小數除法,簡易方程,多邊形的面積,統計與可能性等是本冊教材的重點教學內容。
在數與代數方面,這一冊教材安排了小數乘法、小數除法和簡易方程。小數的乘法和除法在實際生活中和數學學習中都有著廣泛的應用,是小學生應該掌握和形成的基礎知識和基本技能。這部分內容是在前面學習整數四則運算和小數加、減法的基礎上進行教學,繼續培養學生小數的四則運算能力。簡易方程是小學階段集中教學代數初步知識的單元,在這一單元里安排了用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。
在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置;探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。
在統計與概率方面,本冊教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性;在平均數的基礎上教學中位數,使學生理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。
在用數學解決問題方面,教材一方面結合小數乘法和除法兩個單元,教學用所學的乘除法計算知識解決生活中的簡單問題;另一方面,安排了「數學廣角」的教學內容,通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。培養學生的符號感,及觀察、分析、推理的能力,培養他們探索數學問題的興趣和發現、欣賞數學美的意識。
五年級數學 學習方法
(一)數與代數
1、第一單元「倍數與因數」:結合具體情境,經歷探索數的有關特徵的活動,認識自然數,認識倍數和因數,能在100以內的自然數中找出10以內某個自然數的所有倍數,能找出100以內某個自然數的所有因數,知道質數、合數;經歷 2、3、5的倍數特徵的探索過程,知道2、3、5的倍數的特徵,知道奇數和偶數;能根據解決問題的需要,收集有用的信息,進行歸納、類比與猜測,發展初步的合情推理能力;
2.第三單元「分數」:進一步理解分數的意義,能正確用分數描述圖形或簡單的生活現象;認識真分數、假分數與帶分數,理解分數與除法的關系,會進行分數的大小比較;能找出10以內兩個自然數的公倍數和最小公倍數,能找出兩個自然數的公因數和最大公因數,會正確進行約分和通分;初步了解分數在實際生活中的應用,能運用分數知識解決一些簡單的實際問題。
3.第四單元「分數加減法」:理解異分母分數加減法的算理,並能正確計算;能理解分數加減混合運算的順序,並能正確計算;能把分數化成有限小數,也能把有限小數化成分數;能結合實際情境,解決簡單分數加減法的實際問題。
(二)在學習《空間與圖形》可採用數、形結合的方式,以及類比法等教學
1.第二單元「圖形的面積(一)」:知道比較面積大小方法的多樣性;經歷探索平行四邊形、三角形、梯形面積計算方法的過程,並能運用計算的方法解決生活中一些簡單的問題;在探索圖形面積的計算方法中,獲得探索問題成功的體驗。
2.第五單元「圖形的面積(二)」:在探索活動中,認識組合圖形,並會運用不同的方法計算組合圖形的面積;能正確運用計算組合圖形面積的方法,解決相應的實際問題;能估計不規則圖形的面積大小,並能用不同方法計算面積。
六年級數學
(一)數與計算
(1)分數的乘法和除法。分數乘法的意義。分數乘法。乘法的運算定律推廣到分數。倒數。分數除法的意義。分數除法。
(2)分數四則混合運算。分數四則混合運算。
(3)百分數。百分數的意義和寫法。百分數和分數、小數的互化。
(二)比和比例
比的意義和性質。比例的意義和基本性質。解比例。成正比例的量和成反比例的量。
(三)幾何初步知識
圓的認識。圓周率。畫圓。圓的周長和面積。_扇形的認識。軸對稱圖形的初步認識。圓柱的認識。圓柱的表面積和體積。圓錐的認識。圓錐的體積。球和球的半徑、直徑的初步認識。
(四)統計初步知識
統計表。條形統計圖,折線統計圖,_扇形統計圖。
(五)應用題
分數四則應用題(包括工程問題)。百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算)。比例尺。按比例分配。
(六)實踐活動
聯系學生所接觸到的社會情況組織活動。例如就家中的卧室,畫一個平面圖。
(七)整理和復習
六年級數學學習方法:
進入小學高年級後,科目稍微增加、內容拓寬、知識深化……學生認知結構發生根本變化,許多同學容易忽略老師所講的數學思想、數學方法,而注重題目的解答,其實諸如「化歸」、「數形結合」等思想方法遠遠重要於某道題目的解答。
總結比較,理清思緒
知識點的總結比較。每學完一章都應將本章內容做一個框架圖或在腦中過一遍,整理出它們的關系。對於相似易混淆的知識點應分項歸納比較,有時可用聯想法將其區分開。題目的總結比較。同學們可以建立自己的題庫。
在學習《位置》在用數對確定點的位置,這部分滲透了數形結合的思想,和一一對應的思想。學生可在方格紙上畫畫。
學習分數乘法的意義:1、分數乘整數是求幾個相同加數的和的簡便運算,與整數乘法的意義相同。2、分數乘分數是求一個數的幾分之幾是多少。
例:一小時刷一面牆的1/4,1/5小時刷一面牆的多少?實際上是求1/5的1/4是多少?
這種題型可以利用數形結合的數學思想,畫一畫,折一折。再就是利用:工作效率_工作時間=工作總量
在學習分數除法這一節時,例如:分數、除法和小數之間的關系和區別,以及分數除法應用題無論是 折紙 實驗,還是畫線段圖,都是用圖形語言揭示分數除法計算過程的幾何意義。分數乘除法,比的知識,運用了類比的數學。(相似和變式)
在學習圓這一節時,用逐漸逼近的轉化思想。把一個園等分(偶數份)成的份數越多,拼成的圖像越接近長方形。體現化圓為方,化曲為直的思想,應用轉化思想。在應用中,我們還知道面積相同時,長方形的周長最長,正方形居中,圓周長最短。周長一定時,圓面積最大,正方形居中,長方形面積最小。這題蘊含著一個數學規律,即在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積最大,而長方形的面積則最小。
在學習數學廣角這一章節中,例如,研究古代雞兔同籠的問題,就應用了假設法來教學。這種 思維方式 就是劃歸法。
『陸』 小學數學從一年級到五年級都學了哪些知識
一年級:數一數,比一比,1~20加減法,分類,認識鍾表,位置,人民幣,統計,找規律,圖形的拼組。
二年級:長度單位,角的初步認識,表內乘法,物體,萬內數的認識,表內除法,克和千克,萬以內的加法和減法。
三年級:測量,四邊形,時分秒,有餘數的除法,多位數乘以位數,可能性,分數的初步認識,位置與方向,除數是一位數的除法,兩位數乘兩位數,小數的初步認識,面積,年月日。
四年級:大數的認識,角的度量,平行四邊形的梯形,三位數乘兩位數,除數是兩位數的除法,四則運算,運算定律和簡便運算,小數的意義的性質,三角形,小數的加法和減法。
五年級:小數乘法,小數除法,簡易方程,觀察物體,多邊形的面積,統計和可能性,因數和倍數,長方體和正方體,分數的意義和性質,分數的加法和減法,圖形的變換。
『柒』 人教版小學五年級數學知識點總結
以下是 為大家整理的關於人教版小學五年級數學知識點總結的文章,供大家學習參考!
一、學習目標:
1.探索小數乘法、除法的計算方法,能正確進行筆算,並能對其中的算理做出合理的解釋;
2.會用「四捨五入」法截取積是小數的近似值;培養從不同角度觀察,分析事物的能力;
3.理解用字母表示數的意義和作用;
4.理解簡易方程的意思及其解法;
5.在理解的基礎上掌握平行四邊形面積的計算公式,並會運用公式正確地計算平行四邊形的面積。
二、學習難點:
1.能正確進行乘號的簡寫,略寫;小數乘法的計演算法則;
2.小數乘法中積的小腔陵寬數位數和小數點的定位,乘得的積小數位數不夠的,要在前面用0補足;
3.除數是整數的小數除法的計算方法;理解商的小數點要與被除數的小數點對齊的道理;
4.構建初步的空間想像力;
5.用字母表示數的意義和作用;
6.多邊形面積的計算。
三、知識點概念總結:
1.小數乘整數的意義:求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。
2.小數乘法法則:先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。
3.小數除法:小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
4.除數是整數的汪明小數除法計演算法則:先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。
5.除數是小數的除法計演算法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。
6.積的近似數:四捨五入是一種精確度的計數保留法,與其他方法本質相同。但特殊之處在於,採用四捨五入,能使被保留部分的與實際值差值不超過最後一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是最小的。
7.數的互化:
(1)小數化成分數
原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
(2)分數化成小數
用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
(3)化有限小數
一個最簡分數,如果分母伍亮中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5以外的質因數,這個分數就不能化成有限小數。
(4)小數化成百分數
只要把小數點向右移動兩位,同時在後面添上百分號。
(5)百分數化成小數
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
(6)分數化成百分數
通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
(7)百分數化成小數
先把百分數改寫成分數,能約分的要約成最簡分數。
8.小數的分類:
(1)有限小數:小數部分的數位是有限的小數,叫做有限小數。例如:41.7、25.3、0.23都是有限小數。
(2)無限小數:小數部分的數位是無限的小數,叫做無限小數。例如:4.33……3.1415926……
(3)無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。
(4)循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。例如:3.555……0.0333……12.109109……;一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。例如:3.99……的循環節是「9」,0.5454……的循環節是「54」。
9.循環節:如果無限小數的小數點後,從某一位起向右進行到某一位止的一節數字循環出現,首尾銜接,稱這種小數為循環小數,這一節數字稱為循環節。把循環小數寫成個別項與一個無窮等比數列的和的形式後可以化成一個分數。
10.簡易方程:方程ax±b=c(a,b,c是常數)叫做簡易方程。
11.方程:含有未知數的等式叫做方程。(注意方程是等式,又含有未知數,兩者缺一不可)
方程和算術式不同。算術式是一個式子,它由運算符號和已知數組成,它表示未知數。方程是一個等式,在方程里的未知數可以參加運算,並且只有當未知數為特定的數值時,方程才成立。
12.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。如果兩個方程的解相同,那麼這兩個方程叫做同解方程。
13.方程的同解原理:
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
14.解方程:解方程,求方程的解的過程叫做解方程。
15.列方程解應用題的意義:用方程式去解答應用題求得應用題的未知量的方法。
16.列方程解答應用題的步驟:
(1)弄清題意,確定未知數並用x表示;
(2)找出題中的數量之間的相等關系;
(3)列方程,解方程;
(4)檢查或驗算,寫出答案。
17.列方程解應用題的方法:
(1)綜合法
先把應用題中已知數(量)和所設未知數(量)列成有關的代數式,再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種思維過程,其思考方向是從已知到未知。
(2)分析法
先找出等量關系,再根據具體建立等量關系的需要,把應用題中已知數(量)和所設的未知數(量)列成有關的代數式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。
18.列方程解應用題的范圍:
小學范圍內常用方程解的應用題:
(1)一般應用題;
(2)和倍、差倍問題;
(3)幾何形體的周長、面積、體積計算;
(4)分數、百分數應用題;
(5)比和比例應用題。
19.平行四邊形的面積公式:
底×高(推導方法如圖);如用「h」表示高,「a」表示底,「S」表示平行四邊形面積,則S平行四邊形=ah
20.三角形面積公式:
S△=1/2*ah(a是三角形的底,h是底所對應的高)
21.梯形面積公式:
(1)梯形的面積公式:(上底+下底)×高÷2.
用字母表示:(a+b)×h÷2
(2)另一計算公式:中位線×高
用字母表示:l·h
(3)對角線互相垂直的梯形:對角線×對角線÷2.
(7)小學數學三到五年級知識點大全擴展閱讀:
1.小數分類
(1)純小數:整數部分是零的小數,叫做純小數。例如:0.25、0.368都是純小數。
(2)帶小數:整數部分不是零的小數,叫做帶小數。例如:3.25、5.26都是帶小數。
(3)純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。例如:3.111……0.5656……
(4)混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。3.1222……0.03333……寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在它的上面點一個點。
2.循環節的表示方法:
小數化分數分成兩類。
一類:純循環小數化分數,循環節做分子;連寫幾個九作分母,循環節有幾位寫幾個九。
另一類:混循環小數化分數(問題就是這類的),小數部分減去不循環的數字作分子;連寫幾個9再緊接著連寫幾個0作分母,循環節是幾個數就寫幾個9,不循環(小數部分)的數是幾個就寫幾個0.
3.平行四邊形的面積:
平行四邊形的面積等於兩組鄰邊的積乘以夾角的正弦值;
4.三角形的面積
(1)S△=1/2*ah(a是三角形的底,h是底所對應的高)
(2)S△=1/2acsinB=1/2bcsinA=1/2absinC(三個角為∠A∠B∠C,對邊分別為a,b,c,參見三角函數)
(3)S△=abc/(4R)(R是外接圓半徑)
(4)S△=[(a+b+c)r]/2(r是內切圓半徑)
(5)S△=c2sinAsinB/2sin(A+B)
『捌』 小學數學各年級知識點重點難點整理
不同的年級考點不一樣,知識點難易程度也不一樣。下面是我為大家整理的關於小學數學各年級知識點重點難點整理,希望對您有所幫助。歡迎大家閱讀參考學習!
一年級的知識重點
1數與計算
(1)20以內數的認識,加法和減法。
數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題
(2)100以內數的認識。
加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。
兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。
2量與計量
鍾面的認識(整時)。人民幣的認識和簡單計算。
3幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
4應用題
比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)
5實踐活動
選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
二年級的知識重點
1數與計算
(1)兩位數加、減兩位數。兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。
(2)表內乘法和表內除法。乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。
(3)萬以內數的讀法和寫法。數數。百位、千位、萬位。數的讀法、寫法和大小比較。
(4)加法和減法。加法,減法。連加法。加法驗算,用加法驗算減法。
(5)混合運算。先乘除後加減。兩步計算式題。小括弧。
2量與計量
時、分、秒的認識。
米、分米、厘米的認識和簡單計算。
千克(公斤)的認識。
3幾何初步知識
直線和線段的初步認識。角的初步認識。直角。
4應用題
加法和減法一步計算的應用題。乘法和除法一步計算的應用題。比較容易的兩步計算的應用題。
5實踐活動
與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。
三年級的知識重點
1數與計算
(1)一位數的乘、除法。
一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。
(2)兩位數的乘、除法。
一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。
(3)四則混合運算。
兩步計算的式題。小括弧的使用。
(4)分數的初步認識。
分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。
2量與計量
千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。
3幾何初步知識
長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。
4應用題常見的數量關系。
解答兩步計算的應用題。
5實踐活動
聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。
四年級的知識重點
1數與計算
(1)億以內數的讀法和寫法。
計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。
(2)加法和減法。
加法,減法。
接近整十、整百數的加、減法的簡便演算法。
加、減法算式中各部分之間的關系。求未知數x。
(3)乘、除數是三位數的乘、除法。
乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。
乘、除計算的簡單估算。
乘數接近整十、整百的簡便演算法。
乘、除法算式中各部分之間的關系。求未知數x。
(4)四則混合運算。
中括弧。三步計算的式題。
(5)整數及其四則運算的關系和運算定律。
自然數與整數。十進制計數法。讀法和寫法。
四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。
運算定律。簡便運算。
(6)小數的意義、性質,加法和減法。
小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值加法和減法。加法運算定律推廣到小數。
2量與計量
年、月、日。平年、閏年。世紀。24時計時法。
角的度量。
面積單位。
3幾何初步知識
直線的測定。測量距離(工具測、步測、目測)。
射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。
三角形的特徵。
三角形的內角和。
4統計初步知識
簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。
5應用題列綜合算式
解答比較容易的三步計算的應用題。
五年級的知識重點
1計算
小數乘法,小數除法,簡易方程,觀察物體,多邊形的面積,統計與可能性,數學廣角和數學綜合運用等。
在前面學習整數四則運算和小數加、減法的基礎上,繼續培養學生小數的四則運算能力。
2方程
用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的 抽象思維 能力,提高解決問題的能力。
3空間與物體
在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和 經驗 的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置。
4圖形的轉換
探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想 方法 ,促進學生空間觀念的進一步發展。
5統計與概率
教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性。
6平均數
理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。
7實際應用
通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。
六年級的知識重點
1數與計算
(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。
(2)分數四則混合運算,分數四則混合運算。
(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。
2比和比例
比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。
3幾何初步知識
圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。
4統計初步知識
統計表,條形統計圖,折線統計圖,扇形統計圖。
5應用題
分數四則應用題(包括工程問題),百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算),比例尺,按比例分配。
6實踐活動
聯系學生所接觸到的社會情況組織活動,例如就家中的卧室,畫一個平面圖。
相關 文章 :
1. 小學六年級數學知識點、難點及學習方法
2. 小學六年級的數學難點解答
3. 六年級數學學習方法和重點難點
4. 小學三年級數學學習內容重點知識匯總
5. 六年級上冊數學知識點整理歸納