當前位置:首頁 » 基礎知識 » 數學必修1至必修5的知識框架
擴展閱讀
送同學小禮物送什麼 2025-02-02 09:53:46
k線基礎知識什麼是k線 2025-02-02 09:48:57

數學必修1至必修5的知識框架

發布時間: 2024-12-01 22:02:13

Ⅰ 楂樹腑鏁板︼細蹇呬慨涓銆佷簩銆佷笁銆佸洓銆佷簲錛岄変慨涓銆佷簩銆佷笁銆佸洓錛岀煡璇嗙偣鍏ㄥ綊綰

楂樹腑鏁板︼細蹇呬慨涓銆佷簩銆佷笁銆佸洓銆佷簲錛岄変慨涓銆佷簩銆佷笁銆佸洓錛岀煡璇嗙偣鍏ㄥ綊綰沖備笅鎵紺猴細

涓銆80鍒嗗強浠ヤ笅鐨勮冪敓錛

鍋氬氬皯棰樼洰騫朵笉鏄鏈閲嶈佺殑錛屽逛簬榪欓儴鍒嗚冪敓鑰岃█錛屾妸鍩烘湰鐨勭煡璇嗕綋緋繪⒊鐞嗗ソ錛岃冭瘯蹇呰冮樼洰鐨勯樺瀷鏂規硶鏁寸悊濂借繖鎵嶆槸鏈閲嶈佺殑錛屽︿範瑕佺偣錛氬熀紜鐭ヨ瘑+鍩虹棰樺瀷+鍙樺紡棰樺瀷銆

1銆佽佸︿細鍋氬噺娉曪紝浣犱笉瑕佽椽澶氾紝浠涔堥兘鎯沖︼紝涓寮犲嵎瀛愬摢涓棰樼殑鍒嗘暟閮芥兂寰楋紝榪欐槸涓嶆g『鐨勶紝涓瀹氳佸驚搴忔笎榪涳紝鍏堣В鍐沖姏鎵鑳藉強鐨勫繀鑰冪偣銆

2銆佽佷粠鍩烘湰姒傚康鍏ユ墜錛屽埆涓寮濮嬪氨鍋氱患鍚堥樻垨鑰呴毦棰橈紝鍏堟妸緇忓吀鐨勯樺瀷鎼炴竻妤氾紝鐒跺悗鍐嶅仛涓浜涗腑妗i橈紝娣卞寲涓鐐圭偣灝卞彲浠ヤ簡錛屽厛涓嶇伴毦棰樸

3銆佸緢澶氬︾敓鐨勯棶棰樺氨鍦ㄤ簬鍩烘湰鐨勫叕寮忋佹柟娉曡頒笉浣忥紙璺熸病瀛﹁繃涓鏍鳳紝姣鏃犲嵃璞★級銆佽頒笉娓咃紙妯℃1涓ゅ彲錛屼技鏄鑰岄潪錛夈佽頒笉鐗錛堝綋澶╄頒綇浜嗭紝絎浜屽ぉ鍙堝繕浜嗭級錛屾墍浠ワ紝瀵逛簬涔嬪墠鎺屾彙浜嗙殑鐭ヨ瘑錛岃佸畾鏈熺殑銆侀戠箒鐨勯噸澶嶏紝涓閬嶄竴閬嶇殑鍔犳繁鍗拌薄銆

浠ヤ笂鏄姣忎竴涓楂樹腑瀛︾敓鎵蹇呴』瀛︿範鐨勩備笂榪板唴瀹硅嗙洊浜嗛珮涓闃舵典紶緇熺殑鏁板﹀熀紜鐭ヨ瘑鍜屽熀鏈鎶鑳界殑涓昏侀儴鍒嗭紝鍏朵腑鍖呮嫭闆嗗悎銆佸嚱鏁般佹暟鍒椼佷笉絳夊紡銆佽В涓夎掑艦銆佺珛浣撳嚑浣曞垵姝ャ佸鉤闈㈣В鏋愬嚑浣曞垵姝ョ瓑銆備笉鍚岀殑鏄鍦ㄤ繚璇佹墦濂藉熀紜鐨勫悓鏃訛紝榪涗竴姝ュ己璋冧簡榪欎簺鐭ヨ瘑鐨勫彂鐢熴佸彂灞曡繃紼嬪拰瀹為檯搴旂敤錛岃屼笉鍦ㄦ妧宸т笌闅懼害涓婂仛榪囬珮鐨勮佹眰銆傛ゅ栵紝鍩虹鍐呭硅繕澧炲姞浜嗗悜閲忋佺畻娉曘佹傜巼銆佺粺璁$瓑鍐呭廣

Ⅱ 高中數學知識結構框架圖

原發布者:呂明龍88
高中數學知識結構框圖必修一:第一章集合第三章基本初等函數(Ⅰ)必修二:第一章立體幾何初步第二章平面解析幾何初步必修三:第一章演算法初步第二章統計第三章概率必修四:第一章基本初等函數(II)第二章平面向量第三章三角恆等變換必修五:第一章解三角形第二章數列第三章不等式選修2-1:第一章常用邏輯用語第二章圓錐曲線與方程第三章空間向量與立體幾何選修2-2:第一章導數及其應用第二章推理與證明第三章數系的擴充與復數選修2-3:第一章計數原理第二章概率第三章統計案例

Ⅲ 高二數學必修一到五知識點總結

高二時期的學習目標主要體現在班級或年級里你應該達到或者超過什麼水平,以及你在高中 畢業 時將要達到什麼水平,學到什麼知識和技能,考上什麼類型的大學等。以下是我給大家整理的 高二數學 必修一到五知識點 總結 ,希望大家能夠喜歡!

高二數學必修一到五知識點總結1

1、圓的定義:

平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(1)標准方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表衫尺示任何圖形。

(3)求圓方程的 方法 :

一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

3、直線與圓的位置關系:

直線與圓的位置關系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有

(2)過圓外一點的切線:

①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關系:

通過兩圓半徑的和(差),與圓心或悔高距前亮(d)之間的大小比較來確定。

設圓,

兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內切,連心線經過切點,只有一條公切線;

當時,兩圓內含;當時,為同心圓。

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點

高二數學必修一到五知識點總結2

數列定義:

如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。

等差數列的通項公式為:an=a1+(n-1)d(1)

前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

以上n均屬於正整數。

解釋說明:

從(1)式可以看出,an是n的一次函數(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0。

在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數列的平均數。

且任意兩項am,an的關系為:an=am+(n-m)d

它可以看作等差數列廣義的通項公式。

推論公式:

從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。

基本公式:

和=(首項+末項)×項數÷2

項數=(末項-首項)÷公差+1

首項=2和÷項數-末項

末項=2和÷項數-首項

末項=首項+(項數-1)×公差

高二數學必修一到五知識點總結3

1.輾轉相除法是用於求公約數的一種方法,這種演算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得演算法.

2.所謂輾轉相法,就是對於給定的兩個數,用較大的數除以較小的數.若余數不為零,則將較小的數和余數構成新的一對數,繼續上面的除法,直到大數被小數除盡,則這時的除數就是原來兩個數的公約數.

3.更相減損術是一種求兩數公約數的方法.其基本過程是:對於給定的兩數,用較大的數減去較小的數,接著把所得的差與較小的數比較,並以大數減小數,繼續這個操作,直到所得的數相等為止,則這個數就是所求的公約數.

4.秦九韶演算法是一種用於計算一元二次多項式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.進位制是人們為了計數和運算方便而約定的記數系統.「滿進一」,就是k進制,進制的基數是k.

7.將進制的數化為十進制數的方法是:先將進制數寫成用各位上的數字與k的冪的乘積之和的形式,再按照十進制數的運算規則計算出結果.

8.將十進制數化為進制數的方法是:除k取余法.即用k連續去除該十進制數或所得的商,直到商為零為止,然後把每次所得的余數倒著排成一個數就是相應的進制數.


高二數學必修一到五知識點總結相關 文章 :

★ 高二數學必修5知識點總結

★ 高二數學必修一知識點總結

★ 高二數學知識點總結

★ 高中數學必修一知識點總結

★ 高二數學整體知識總結

★ 高一數學必修五知識點總結

★ 高二數學考點知識點總結復習大綱

★ 高中數學必修1知識點總結

★ 高二數學知識點總結(人教版)

★ 高中數學學霸提分秘籍:必修五知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅳ 高一高二高三數學分別學什麼

高一高二高三數學分別學的內容如下:
1、高一數學學習必修1到必修5:其中,必修1主要是集合與函數的基礎知識,鍛煉學生邏輯思維能力;必修2涉及空間幾何體、點與直線平面的關系、直線與方程、圓與方程等內容;必修4關注三角函數和平面向量的學習;必修5則包括解三角形、數列和不等式等重要知識點。
2、高二數學學習必修3及選修內容:必修3涵蓋的演算法、統計、概率等知識是高中數學的重點內容,而選修部分則可以根據學生的興趣和需求進行選擇,如選修一些拓展的數學理論或應用數學課程等。
3、高三數學則進入總復習階段:學生需要全面回顧和鞏固之前學過的所有數學知識,包括必修和選修內容,同時加強解題技巧和數學思維能力的培養。此外,高三數學還會涉及到一些更高級的數學知識和方法,如微積分、數論等,以便為學生的大學數學學習做好准備。

Ⅳ 高中數學必修一到必修五的知識點歸納有哪些

高中數學必修一到必修五的知識點歸納有:

1、向量的基本概念

(1)向量

既有大小又有方向的量叫做向量。物理學中又叫做矢量。如力、速度、加速度、位移就是向量。

(2)平行向量

方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共線向量。

(3)相等向量

長度相等且方向相同的向量叫做相等向量。

2、對於向量概念需注意

(1)向量是區別於數量的一種量,既有大小,又有方向,任意兩個向量不能比較大小,只可以判斷它們是否相等,但向量的模可以比較大小。

(2)向量共線與表示它們的有向線段共線不同。向量共線時,表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上。

(3)由向量相等的定義可知,對於一個向量,只要不改變它的大小和方向,它是可以任意平行移動的,因此用有向線段表示向量時,可以任意選取有向線段的起點,由此也可得到:任意一組平行向量都可以平移到同一條直線上。

3、求函數的單調性:

利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。

4、求函數的極值:

設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。

5、求函數的值與最小值:

如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是一定的。