當前位置:首頁 » 基礎知識 » 初一數學上冊知識點匯總圖表
擴展閱讀
幼兒園講發電廠知識 2024-11-28 00:16:52

初一數學上冊知識點匯總圖表

發布時間: 2024-11-27 21:58:21

❶ 初一數學上冊的內容

初一數學上冊內容


一、數的認識


1. 有理數的定義和性質: 包括正數、負數、零的定義,有理數的大小比較,以及運算性質等。這是數學學習的基石,為後續的數學運算打下基礎。


2. 整數的概念及其性質: 對整數的認識擴展到更大范圍,包括整數的運算、比較大小,以及絕對值的定義和應用。


二、代數初步


1. 表達式與代數式: 學習如何列代數式表示數量關系,了解代數式的簡化與計算。


2. 方程式與不等式: 學習一元一次方程和不等式的解法,理解方程和不等式在解決實際問題中的應用。


三、幾何初步


1. 線段與角的基本概念: 學習線段、射線、直線的定義,角的定義及其分類。


2. 圖形的性質: 了解線段的基本性質,如線段的中點、線段的和差等。同時,學習角的和差計算,以及平行線的性質等。


四、數據及其表示


1. 數據的收集與分類: 學習數據的收集方法,如何對數據進行分類和整理。


2. 統計圖表: 了解各種統計圖表的繪制方法,學習如何利用統計圖表表示數據。


初一數學上冊的內容主要包括對數的認識的深化,代數初步的引入,幾何知識的啟蒙以及數據及其表示的方法。學生將鞏固有理數的知識,擴展對整數的認識,並接觸到代數式、方程式和不等式等基礎知識。在幾何方面,學生將學習線段和角的基本概念,了解圖形的性質。此外,學生還將接觸到數據的收集、分類和表示方法,為後續的統計和概率學習打下基礎。這些內容的學習將有助於培養學生的數學運算能力、邏輯思維能力和解決實際問題的能力。


數學作為一門基礎學科,初一的學習內容既是基礎又是關鍵。學生需要認真掌握每一項知識點,通過不斷的練習和實踐,將所學知識運用到實際生活中。

❷ 初中數學初一上學期學些什麼內容

《【初中之友】數學電子課本》網路網盤資源免費下載

鏈接: https://pan..com/s/1McZEoB8moZwWbE6cG1QC3w

?pwd=ed4d 提取碼: ed4d

【初中之友】數學電子課本|人教版數學七年級下冊.pdf|人教版數學九年級下冊電子課本.pdf|人教版八年級數學(下冊)教材高清版.pdf|更多資料關注語文視窗、數學視野、初中之友.png

❸ 怎樣學好初一數學

一、要不斷培養學習數學的興趣和求知慾望。

許多同學在小學都曾有過這樣的感受,每當你認識了一個數學規律,解決了一個較難的應用問題,成功的喜悅是無法用別的東西來替代的,它激勵你的學習熱情和好奇心,越學越愛學。

學習的興趣和求知慾是要不斷地培養的,況且同學們剛剛邁進「數學王國」的大花園里,許多奧妙無窮的數學問題還等著你們去學習、觀賞、研究。

二、要養成認真讀書,獨立思考的好習慣。

過去有些同學認為:學習數學主要是靠上課聽老師講明白,而把我們手中的數學課本僅僅當成做作業的「習題集」。這就有兩個認識問題必須要解決。一是同學們要認識到,我們的教科書記載了由數學工作者整理的、大家必須掌握的基礎知識,以及如何運用這些知識解決問題等。

三、要始終抓住如何「從算術進展到代數」這個重要的基本課題。

《初一代數》(上冊)的數學內容從整體上看主要是解決從算術進展到代數這個重要的基本課題。我們認為主要體現在以下兩個方面。

一方面是「數集的擴充」,即引進負數,把原有的算術數集合擴充到有理數集合;另一方面是解代數方程的原理和方法,即從用字母表示數,到用「列方程」取代。

❹ 數學小報初一上冊

製作初一上冊數學小報的方法如下:

1、確定主題:你需要確定你的數學小報的主題。這個主題應該是與初一上冊數學課程相關的,例如「幾何圖形」、「代數方程」或「概率統計」。收集資料:在確定了主題後,你需要收集相關的資料。這些資料可以包括課本中的內容、教師的講解、網路資源等。

2、設計版面:需要設計小報的版面。你可以選擇一種簡單的版面設計,例如將小報分為標題、正文和圖片三個部分。標題應該簡潔明了,能夠吸引讀者的注意力;正文應該詳細介紹你的主題內容,可以使用不同的字體和顏色來突出重點;圖片可以用來輔助說明,增強小報的視覺效果。

3、數學故事小報:數學故事小報是一種以數學故事為主題的小報,通常包括數學家的故事、數學歷史、數學與生活等。這種小報可以幫助學生了解數學的歷史和文化背景,增強對數學的認識和理解。

4、數學題型小報:數學題型小報是一種以數學題型為主題的小報,通常包括經典題型、難題解析、易錯題等。這種小報可以幫助學生掌握不同類型的數學題型的解題方法和技巧,提高解題能力和應試能力。

❺ 初一上冊數學期末知識點

初一上冊數學期末知識點 篇1

一.線段、射線、直線

1.正確理解直線、射線、線段的概念以及它們的區別:

名稱圖形表示方法端點長度

直線直線AB(或BA)

直線l無端點無法度量

射線射線OM1個無法度量

線段線段AB(或BA)

線段l2個可度量長度

2.直線公理:經過兩點有且只有一條直線。

二.比較線段的長短

1.線段公理:兩點間線段最短;兩之間線段的長度叫做這兩點之間的距離。

2.比較線段長短的兩種方法:

①圓規截取比較法;

②刻度尺度量比較法。

3.用刻度尺可以畫出線段的中點,線段的和、差、倍、分;

用圓規可以畫出線段的和、差、倍。

三.角的度量與表示

1.角:有公共端點的兩條射線組成的圖形叫做角;

這個公共端點叫做角的頂點;

這兩條射線叫做角的邊

2.角的表示法:角的符號為「∠」

初一上冊數學期末知識點 篇2

①求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。負數的奇次冪是負數,負數的偶次冪是正數(負奇負,負偶正)。正數的任何次冪都是正數,0的任何次冪都是0。

②偶次方等於一個正數的值有兩個(兩個互為相反數)如:a2=4,a=2或a=-2

注意:|a|+b2=0 得:a=0 且 b=0

強記:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;

-13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8

③有理數的混合運演算法則:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。注意:12-4×5=12-20(不能把-變+)

④把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a n比原整數位減1。(注意科學計數法與原數的互劃。

⑤四捨五入到哪一位就是精確到哪一位,四捨五入時望後多看一位採用四捨五入。比如:3.5449精確到0.01就是3.54而不是3.55. (再如: 2.40萬:精確到百位;6.5×104精確到千位,有數量級和科學計數法的要還原成原數,看數量級和科學計數法的最後一個數)。

初一上冊數學期末知識點 篇3

數軸的三要素:原點、正方向、單位長度(三者缺一不可)。

任何一個有理數,都可以用數軸上的一個點來表示。(反過來,不能說數軸上所有的點都表示有理數)

如果兩個數只有符號不同,那麼我們稱其中一個數為另一個數的相反數,也稱這兩個數互為相反數。(0的相反數是0)

在數軸上,表示互為相反數的兩個點,位於原點的側,且到原點的距離相等。

數軸上兩點表示的數,右邊的總比左邊的大。正數在原點的右邊,負數在原點的左邊。

絕對值的定義:一個數a的絕對值就是數軸上表示數a的點與原點的距離。數a的絕對值記作|a|。

正數的絕對值是它本身;負數的絕對值是它的數;0的絕對值是0。

絕對值的性質:除0外,絕對值為一正數的數有兩個,它們互為相反數;

互為相反數的兩數(除0外)的絕對值相等;

任何數的絕對值總是非負數,即|a|0

比較兩個負數的大小,絕對值大的反而小。比較兩個負數的大小的步驟如下:

①先求出兩個數負數的絕對值;

②比較兩個絕對值的大小;

③根據兩個負數,絕對值大的反而小做出正確的判斷。

絕對值的性質:

①對任何有理數a,都有|a|0

②若|a|=0,則|a|=0,反之亦然

③若|a|=b,則a=b

④對任何有理數a,都有|a|=|-a|

有理數加法法則:

①同號兩數相加,取相同符號,並把絕對值相加。

②異號兩數相加,絕對值相等時和為0;絕對值不等時取絕對值較大的數的符號,並用較大數的絕對值減去較小數的絕對值。

③一個數同0相加,仍得這個數。

加法的交換律、結合律在有理數運算中同樣適用。

靈活運用運算律,使用運算簡化,通常有下列規律:

①互為相反的兩個數,可以先相加;

②符號相同的數,可以先相加;

③分母相同的數,可以先相加;

④幾個數相加能得到整數,可以先相加。

有理數減法法則:

減去一個數,等於加上這個數的相反數。

有理數減法運算時注意兩變:

①改變運算符號;

②改變減數的性質符號(變為相反數)

有理數減法運算時注意一個不變:被減數與減數的位置不能變換,也就是說,減法沒有交換律。

有理數的加減法混合運算的步驟:

①寫成省略加號的代數和。在一個算式中,若有減法,應由有理數的減法法則轉化為加法,然後再省略加號和括弧;

②利用加法則,加法交換律、結合律簡化計算。

(注意:減去一個數等於加上這個數的相反數,當有減法統一成加法時,減數應變成它本身的相反數。)

有理數乘法法則:

①兩數相乘,同號得正,異號得負,絕對值相乘。

②任何數與0相乘,積仍為0。

如果兩個數互為倒數,則它們的乘積為1。(如:-2與 、 等)

乘法的交換律、結合律、分配律在有理數運算中同樣適用。

有理數乘法運算步驟:

①先確定積的符號;

②求出各因數的絕對值的積。

乘積為1的兩個有理數互為倒數。注意:

①零沒有倒數

②求分數的倒數,就是把分數的分子分母顛倒位置。一個帶分數要先化成假分數。

③正數的倒數是正數,負數的倒數是負數。

有理數除法法則:

①兩個有理數相除,同號得正,異號得負,並把絕對值相除。

②0除以任何非0的數都得0。0不可作為除數,否則無意義。

有理數的乘方

注意:

①一個數可以看作是本身的一次方,如5=51;

②當底數是負數或分數時,要先用括弧將底數括上,再在右上角寫指數。

乘方的運算性質:

①正數的任何次冪都是正數;

②負數的奇次冪是負數,負數的偶次冪是正數;

③任何數的偶數次冪都是非負數;

④1的任何次冪都得1,0的任何次冪都得0;

⑤-1的偶次冪得1;-1的奇次冪得-1;

⑥在運算過程中,首先要確定冪的符號,然後再計算冪的絕對值。

有理數混合運演算法則:

①先算乘方,再算乘除,最後算加減。

②如果有括弧,先算括弧裡面的。

初一上冊數學期末知識點 篇4

①大於0的數叫正數。

②在正數前面加上「-」號的數,叫做負數。

③0既不是正數也不是負數。0是正數和負數的分界,是唯一的中性數。

④搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等。

⑤正整數、0、負整數統稱整數(結合數軸和一元一次方程出題),正分數和負分數統稱分數。整數和分數統稱有理數。

⑥非負數就是正數和零;非負整數就是正整數和0。

⑦「基準」題:有固定的基準數,和的求法:基準數×個數+與基準數相比較的數的代數和;平均數的求法:基準數+與基準數相比較的`數的代數和÷個數(寫出原數,也可用小學知識解答);「非基準」題:無固定的基準數,如明天和今天比,後天和明天比。

初一上冊數學期末知識點 篇5

整式的乘法:

①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。

②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

初一上冊數學期末知識點 篇6

實數:—有理數與無理數統稱為實數。

有理數:整數和分數統稱為有理數。

無理數:無理數是指無限不循環小數。

自然數:表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。

數軸:規定了圓點、正方向和單位長度的直線叫做數軸。

相反數:符號不同的兩個數互為相反數。

倒數:乘積是1的兩個數互為倒數。

絕對值:數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。

初一上冊數學期末知識點 篇7

一、概念梳理

⑴列一元一次方程解決實際問題的一般步驟是:審題,特別注意關鍵的字和詞的意義,弄清相關數量關系,注意單位統一,注意設未知數;

①解:設出未知數(注意單位),

②根據相等關系列出方程,

③解這個方程,

④答(包括單位名稱,最好檢驗)。

⑵一些固定模型中的等量關系:

①數字問題:表示一個三位數,則有=100a+10b+c(數位上的數字×位數)

②行程問題:基本公式:路程=時間×速度

甲乙同時相向行走相遇時:甲走的路程+乙走的路程=總路程

甲走的時間=乙走的時間;

甲乙同時同向行走追及時:甲走的路程-乙走的路程=甲乙之間距離

③工程問題(整體1):基本公式:工作量=工作時間×工作效率

各部分工作量之和=總工作量;

④儲蓄問題:本息和=本金+利息;利息=本金×利率×時間

⑤商品銷售問題:商品利潤=售價-進價(成本價)

商品利潤率=(售價-進價)/進價

⑥等積變形問題:面積或體積不變

⑦和、差、倍、分問題:多、少、幾倍、幾分之幾

⑧按比例分配問題:一般設每份為x如:2:3:4為2x、3x、4x

⑨資源調配問題:資源、人員的調配(有時要間接設未知數)

二、思想方法(本單元常用到的數學思想方法小結)

⑴模型思想:通過對實際問題中的數量關系的分析,抽象成數學模型,建立一元一次方程的思想。

⑵方程思想:用方程解決實際問題的思想(如:按比例分配、線段的長、角的大小等)就是方程思想。

⑶轉化(歸納)思想:解一元一次方程的過程,實質上就是利用去分母、去括弧、移項、合並同類項、未知數的系數化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最後逐步把方程轉化為x=a的形式.體現了化「未知」為「已知」的化歸思想。

⑷數形結合思想:如:數軸問題、在列方程解決行程問題時,藉助於線段示意圖和圖表等來分析數量關系,使問題中的數量關系很直觀地展示出來,體現了數形結合的優越性。

⑸分類(整體)思想:如:絕對值、偶次方、點在線段上(延長線上、線段外)、角在角內(外)在解含字母系數的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用。

初一上冊數學期末知識點 篇8

①大於0的數叫正數。

②在正數前面加上「-」號的數,叫做負數。

③0既不是正數也不是負數。0是正數和負數的分界,是唯一的中性數。

④搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等。

⑤正整數、0、負整數統稱整數(結合數軸和一元一次方程出題),正分數和負分數統稱分數。整數和分數統稱有理數。

⑥非負數就是正數和零;非負整數就是正整數和0。

⑦「基準」題:有固定的基準數,和的求法:基準數×個數+與基準數相比較的數的代數和;平均數的求法:基準數+與基準數相比較的數的代數和÷個數(寫出原數,也可用小學知識解答);「非基準」題:無固定的基準數,如明天和今天比,後天和明天比。

❻ 初一數學上冊知識點歸納

七年級初一上冊的數學知識點是奠定中學數學學習的基礎,所以新初一的學生最好趁這個暑期將這部分內容學習好。我在這里整理了相關資料,希望能幫助到您。

目錄

第一章 有理數

第二章 整式的加減

第三章 一元一次方程

第四章 幾何圖形初步

第一章 有理數

1.1 正數與負數

①正數:大於0的數叫正數。(根據需要,有時在正數前面也加上「+」)

②負數:在以前學過的0以外的數前面加上負號「—」的數叫負數。與正數具有相反意義。

③0既不是正數也不是負數。0是正數和負數的分界,是唯一的中性數。

注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等

1.2 有理數

1、有理數(1)整數:正整數、0、負整數統稱整數;(2)分數;正分數和負分數統稱分數;

(3)有理數:整數和分數統稱有理數。

2、數軸(1)定義 :通常用一條直線上的點表示數,這條直線叫數軸;

(2)數軸三要素:原點、正方向、單位長度;

(3)原點:在直線上任取一個點表示數0,這個點叫做原點;

(4)數軸上的點和有理數的關系:所有的有理數都可以用數軸上的點表示出來,但數軸上的點,不都是表示有理數。

3、相反數:只有符號不同的兩個數叫做互為相反數。(例:2的相反數是-2;0的相反數是0)

4、絕對值:(1)數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。從幾何意義上講,數的絕對值是兩點間的距離。

(2) 一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法

①有理數加法法則:

1、同號兩數相加,取相同的符號,並把絕對值相加。

2、絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

3、一個數同0相加,仍得這個數。

加法的交換律和結合律

②有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法

①有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;

任何數同0相乘,都得0;

乘積是1的兩個數互為倒數。

乘法交換律/結合律/分配律

②有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數;

兩數相除,同號得正,異號得負,並把絕對值相除;

0除以任何一個不等於0的數,都得0。

1.5 有理數的乘方

1、求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

2、有理數的混合運演算法則:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

3、把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a <10。


第二章 整式的加減

2.1 整式

1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數. 單項式指的是數或字母的積的代數式.單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式.

2、單項式的系數:是指單項式中的數字因數;

3、單項數的次數:是指單項式中所有字母的指數的和.

4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項,多項式的次數就是多項式中次數最高的次數。多項式的次數是指多項式里次數最高項的次數,這里是次數最高項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質符號.

5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

6、單項式和多項式統稱為整式。

2.2整式的加減

1、同類項:所含字母相同,並且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。

2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可.同類項與系數大小、字母的排列順序無關

3、合並同類項:把多項式中的同類項合並成一項。可以運用交換律,結合律和分配律。

4、合並同類項法則:合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變;

5、去括弧法則:去括弧,看符號:是正號,不變號;是負號,全變號。

6、整式加減的一般步驟:

一去、二找、三合

(1)如果遇到括弧按去括弧法則先去括弧. (2)結合同類項. (3)合並同類項


第三章 一元一次方程

3.1 一元一次方程

1、方程是含有未知數的等式。

2、方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。

注意:判斷一個方程是否是一元一次方程要抓住三點:

1)未知數所在的式子是整式(方程是整式方程);

2)化簡後方程中只含有一個未知數;

3)經整理後方程中未知數的次數是1.

3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。

4、等式的性質: 1)等式兩邊同時加(或減)同一個數(或式子),結果仍相等;

2)等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數.

3.2 、3.3解一元一次方程

在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用. 因此在解方程時還要注意以下幾點:

①去分母:在方程兩邊都乘以各分母的最小公倍數,不要漏乘不含分母的項;分子是一個整體,去分母後應加上括弧;去分母與分母化整是兩個概念,不能混淆;

②去括弧:遵從先去小括弧,再去中括弧,最後去大括弧;不要漏乘括弧的項;不要弄錯符號;

③移項:把含有未知數的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號) 移項要變號;

④合並同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

⑤系數化為1::字母及其指數不變系數化成1,在方程兩邊都除以未知數的系數a,得到方程的解。不要分子、分母搞顛倒。

3.4 實際問題與一元一次方程

一.概念梳理

⑴列一元一次方程解決實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關數量關系;②設出未知數(注意單位);③根據相等關系列出方程;④解這個方程;⑤檢驗並寫出答案(包括單位名稱)。

⑵一些固定模型中的等量關系及典型例題參照一元一次方程應用題專練學案。

二、思想 方法 (本單元常用到的數學思想方法小結)

⑴建模思想:通過對實際問題中的數量關系的分析,抽象成數學模型,建立一元一次方程的思想.

⑵方程思想:用方程解決實際問題的思想就是方程思想.

⑶化歸思想:解一元一次方程的過程,實質上就是利用去分母、去括弧、移項、合並同類項、未知數的系數化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最後逐步把方程轉化為x=a的形式. 體現了化「未知」為「已知」的化歸思想.

⑷數形結合思想:在列方程解決問題時,藉助於線段示意圖和圖表等來分析數量關系,使問題中的數量關系很直觀地展示出來,體現了數形結合的優越性.

⑸分類思想:在解含字母系數的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.

三、數學思想方法的學習

1. 解一元一次方程時,要明確每一步過程都作什麼變形,應該注意什麼問題.

2. 尋找實際問題的數量關系時,要善於藉助直觀分析法,如表格法,直線分析法和圖示分析法等.

3. 列方程解應用題的檢驗包括兩個方面:⑴檢驗求得的結果是不是方程的解;

⑵是要判斷方程的解是否符合題目中的實際意義.

四、應用(常見等量關系)

行程問題:s=v×t

工程問題:工作總量=工作效率×時間

盈虧問題:利潤=售價-成本

利率=利潤÷成本×100%

售價=標價×折扣數×10%

儲蓄利潤問題:利息=本金×利率×時間

本息和=本金+利息


第四章 幾何圖形初步

4.1 幾何圖形

1、幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。

2、立體圖形:這些幾何圖形的各部分不都在同一個平面內。

3、平面圖形:這些幾何圖形的各部分都在同一個平面內。

4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。

立體圖形中某些部分是平面圖形。

5、三視圖:從左面看,從正面看,從上面看

6、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形。這樣的平面圖形稱為相應立體圖形的展開圖。

7、⑴幾何體簡稱體;包圍著體的是面;面 面相 交形成線;線線相交形成點;

⑵點無大小,線、面有曲直;

⑶幾何圖形都是由點、線、面、體組成的;

⑷點動成線,線動成面,面動成體;

⑸點:是組成幾何圖形的基本元素。

4.2 直線、射線、線段

1、直線公理:經過兩點有一條直線,並且只有一條直線。即:兩點確定一條直線。

2、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。

3、把一條線段分成相等的兩條線段的點,叫做這條線段的中點。

4、線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

5、連接兩點間的線段的長度,叫做這兩點的距離。

6、直線的表示方法:如圖的直線可記作直線AB或記作直線m.

(1)用幾何語言描述右面的圖形,我們可以說:

點P在直線AB外,點A、B都在直線AB上.

(2)如圖,點O既在直線m上,又在直線n上,我們稱直線

m、n 相交,交點為O.

7、在直線上取點O,把直線分成兩個部分,去掉一邊的一個部分,保留點0和另一部分就得到一條射線,如圖就是一條射線,記作射線OM或記作射線a.葫蘆島英霸 教育 聯盟http://www.yingbajiaoyu.com/ 18342389605

注意:射線有一個端點,向一方無限延伸.

8、在直線上取兩個點A、B,把直線分成三個部分,去掉兩邊的部分,保留點A、B和中間的一部分就得到一條線段.如圖就是一條線段,記作線段AB或記作線段a.

注意:線段有兩個端點.

4.3 角

1. 角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。如圖,角的頂點是O,兩邊分別是射線OA、OB.

2、角有以下的表示方法:

① 用三個大寫字母及符號「∠」表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間.如上圖的角,可以記作∠AOB或∠BOA.

② 用一個大寫字母表示.這個字母就是頂點.如上圖的角可記作∠O.當有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示.

③ 用一個數字或一個希臘字母表示.在角的內部靠近角的頂點

處畫一弧線,寫上希臘字母或數字.如圖的兩個角,分別記作∠、∠1

2、以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進制的。

1度=60分 1分=60秒 1周角=360度 1平角=180度

3、角的平分線:一般地,從一個角的頂點出發,把這個角分成兩個相等的角的射線,叫做這個角的平分線。

4、如果兩個角的和等於90度(直角),就說這兩個叫互為餘角,即其中每一個角是另一個角的餘角;

如果兩個角的和等於180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。

5、同角(等角)的補角相等;同角(等角)的餘角相等。

6、方位角:一般以正南正北為基準,描述物體運動的方向。


初一數學上冊知識點歸納相關 文章 :

1. 初一數學上冊人教版知識點歸納

2. 初一數學知識點總結

3. 初一年級上冊數學的21個熱門知識點

4. 初一上冊數學知識點手抄報

5. 初一上冊數學第一單元知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();