當前位置:首頁 » 基礎知識 » 在線聽數學知識點高一

在線聽數學知識點高一

發布時間: 2024-11-27 07:46:28

1. 高一數學必修一函數的概念知識點

高中數學因為知識點多,好多同學聽課能聽懂,但是做題卻不會。因此,經常性的復習是鞏固數學知識點的很好的途徑。以下是我為您整理的關於高一數學必修一函數的概念知識點的相關資料,供您閱讀。

高一數學必修一函數的概念知識點

知識點總結

本節主要包括函數的定義、函數的表示方法、函數的定義域、函數的值域、分段函數及映射等知識點。其中關鍵是函數的概念的理解。

1、映射的定義

2、函數的概念

3、函數的三要素:定義域、值域和對應法則。

4、兩個函數能成為同一函數的條件

當且僅當兩個函數的定義域和對應法則完全相同時,這兩個函數才是同一函數。

5、區間的概念和記號

6、函數的表示方法

函數的表示方法有三種。(1)解析法(2)列表法(3)圖像法

7、分段函數

常見考法

本節是段考和高考必不可少的考查部分,多以選擇題和填空題的形式出現。段考中常考查函數的定義域、值域、對應法則、同一函數、函數的解析式和分段函數。高考中可以和高中數學的大部分章節知識聯合考查,但是難度不大,屬於容易題。多考查函數的定義域、函數的表示方法和分段函數。

誤區提醒

1、映射是一種特殊的函數,映射中的集合A,B可以是數集,也可以是點集或其他集合,這兩個集合有先後順序。A到B的映射與B到A的映射是不同的。而函數是數集到數集的映射,所以函數是特殊的映射,但是映射不一定是函數。

2、函數的問題,要遵循“定義域優先”的原則。無論是簡單的函數,還是復雜的函數,無論是具體的函數,還是抽象的函數,必須優先考慮函數的定義域。之所以要做到這一點,不僅是為了防止出現錯誤,有時還會為解題帶來方便。

2. 高一數學必修一知識點梳理

想了解高一數學知識,學習鞏固數學的小夥伴,趕緊過來瞧一瞧。下面由我為你精心准備了「高一數學必修一知識點梳理」,本文僅供參考,持續關注本站將可以持續獲取更多的知識點!

高一數學必修一知識點梳理

1.函數的奇偶性。

(1)若f(x)是偶函數,那麼f(x)=f(-x)。

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數)。

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。

2.復合函數的有關問題。

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定。

3.函數圖像(或方程曲線的對稱性)。

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上。

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0。

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱。

4.函數的周期性。

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函數。

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數。

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數。

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數。

5.判斷對應是否為映射時,抓住兩點。

(1)A中元素必須都有象且唯一。

(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象。

6.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

7.對於反函數,應掌握以下一些結論。

(1)定義域上的單調函數必有反函數。

(2)奇函數的反函數也是奇函數。

(3)定義域為非單元素集的偶函數不存在反函數。

(4)周期函數不存在反函數。

(5)互為反函數的兩個函數具有相同的單調性。

(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

8.處理二次函數的問題勿忘數形結合。

二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系。

9.依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題。

10.恆成立問題的處理方法。

(1)分離參數法。

(2)轉化為一元二次方程的根的分布列不等式(組)求解。

拓展閱讀:學習數學的方法

1.樹立學好高中數學的信心。

進入高中就必須樹立正確的學習目標和遠大的理想。激勵自己積極思考,勇於進取,培養學習數學的興趣,樹立學好數學的信心。

2.先看筆記後做作業。

有的高中學生感到。老師講過的,自己已經聽得明明白白了。但是,為什麼自己一做題就困難重重了呢?其原因在於,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區別。尤其練習題不太配套時,作業中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

3.做題之後加強反思。

學生一定要明確,現在正做著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結一下自己的收獲。要總結出,這是一道什麼內容的題,用的是什麼方法。做到知識成片,問題成串,日久天長,構建起一個內容與方法的科學的網路系統。

4.主動復習總結提高。

進行章節總結是非常重要的。初中時是教師替學生做總結,做得細致,深刻,完整。高中是自己給自己做總結,老師不但不給做,而且是講到哪,考到哪,不留復習時間,也沒有明確指出做總結的時間。

5.積累資料隨時整理。

要注意積累復習資料。把課堂筆記,練習,單元測試,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內容。這樣,復習資料才能越讀越精,一目瞭然。

6.跳出永無止境的題海。

省下時間,把精力花在研究精題上。最大限度地利用兩大類精題:一類是涵蓋了多項考點的母題,一類是同一題型中自己頻率較高的錯題。

7.總結數學規律。

數學並不難,其實就是按規律做題而已。道理很簡單,因為出題的人就是按規律出題的。所以說只要掌握了規律,就不用怕了,關鍵就在於找規律。同一類型的題目,這次錯了,總結出規律來下次就會做了。規律越來越多,就像有更多的鑰匙,面對各種各樣的鎖,也就不怕了。別人給你總結好了,你要再總結一次,這樣,它才能成為你的,我們的數學就建立在以前數學家總結的規律上。

3. 高一數學平面向量知識點總結

平面向量是高中數學中基本內容,也是聯系代數與幾何的一種工具,為高考的重點內容。下面我給大家帶來 高一數學 平面向量知識點,希望對你有幫助。

目錄

高一數學平面向量知識點

高一數學知識點

高一數學學習方法

高一數學平面向量知識點

向量:既有大小,又有方向的量.

數量:只有大小,沒有方向的量.

有向線段的三要素:起點、方向、長度.

零向量:長度為的向量.

單位向量:長度等於個單位的向量.

相等向量:長度相等且方向相同的向量

&向量的運算

加法運算

AB+BC=AC,這種計演算法則叫做向量加法的三角形法則。

已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計演算法則叫做向量加法的平行四邊形法則。

對於零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法滿足所有的加法運算定律。

減法運算

與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

數乘運算

實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ< 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。

設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法運算、減法運算、數乘運算統稱線性運算。

向量的數量積

已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。

a.b的幾何意義:數量積a.b等於a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

兩個向量的數量積等於它們對應坐標的乘積的和。

<<<

高一數學知識點

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

<<<

高一 數學 學習 方法

認真聽課做筆記

在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高45分鍾課堂效益。

把握教材去理解

要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習高一數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。

提高思維敏捷力

如果數學課沒有一定的速度,那是一種無效學習。慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養不出數學能力的,這就要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高。

避免遺留問題

在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對於那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結症遺留下來,甚至沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。

<<<


高一數學平面向量知識點 總結 相關 文章 :

★ 高一數學平面向量知識點總結

★ 高一數學平面向量知識點

★ 高中數學必修4平面向量知識點總結

★ 數學必修4向量公式歸納

★ 高一數學平面向量知識點分析

★ 高中高一數學知識點總結

★ 數學必修4平面向量公式總結

★ 高中數學必修4平面向量知識點

★ 高一數學知識點總結歸納

★ 高中數學平面解析幾何知識點歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

4. 高一數學網課哪家補的好

高一數學網課哪家補的好?我整理了相關內容,快來看看吧!

高一數學網課推薦

1、掌門一對一

掌門1對1旗下擁有1萬名名師,全部來自清華、北大、復旦、交大、浙大等全國一流學府,高質量的師資,教學品質的認真鑽研,目前擁有20000套自製教材,在行業中具備了核心競爭力。

掌門1對1始終專注於為學生提供1對1在線定製教育,根據每個孩子不同的學習水平及習慣,定製最適合他們的專屬學習方案,讓每個老師的應試技巧和學霸經驗,都能更好地教授給自己的學生。

掌門1對1獲青松資本、順為資本、達晨創投、華晟資本等雄厚資本聯合投資,實力派巨星黃磊為品牌代言人。

2、精華在線

高一數學學習方法

1、課前預習

進行課前預習,把要學習內容的章節看一遍,把知識點弄懂上課就不會因為一時搞不懂知識被卡住。

2、課前筆記

在課前預習完成的時候,對預習單元的知識點做出思維導圖,上課就不用做筆記。

3、專心聽課

由於課前已經做了筆記,上課只要緊跟老師思路專心聽課就可以了。

4、補充筆記

另外如果是有一些課本沒有的知識或典型例題,也可以添加到課前筆記。

5、課後做題

也可以在課前預習先做一部分習題,最好多做一些習題加深知識點熟悉運用。

6、課後復習

最後是對照筆記復習上課老師講的學習內容,檢查習題做錯的題目查漏知識點補缺。

5. 高一數學必修一基本初等函數知識點總結

基本初等函數是高一數學必修一課本內的重點內容,有哪些知識點要了解?下面是我給大家帶來的高一數學必修一基本初等函數知識點,希望對你有幫助。

高一數學必修一基本初等函數知識點

從其中一個頂點向一個邊引一條線,交另一邊上某一點,則這個圖形變成有一條公共邊且另一組邊在同一直線上的兩個三角形。有六個內角,其中公共邊與另一組在同一直線上的邊相交形成的兩個角中,每一個角都是一個三角形的一個內角,且是另一個三角形的一個外角……

另外還有大於平角小於周角的角。

正弦函數 sinθ=y/r

餘弦函數 cosθ=x/r

正切函數 tanθ=y/x

餘切函數 cotθ=x/y

正割函數 secθ=r/x

餘割函數 cscθ=r/y

同角三角函數間的基本關系式:

·平方關系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·積的關系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒數關系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

一個園,弧長和半徑相等時所對應的角度是1弧度.弧度和角度的換算關系: 弧度*180/(2*π)=角度

★ 誘導公式★

常用的誘導公式有以下幾組:

公式一:

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系: sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與 -α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系: sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系: sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

函數類型 第一象限 第二象限 第三象限 第四象限 正弦 + + — — 餘弦 + — — + 正切 + — + — 餘切

正弦函數的性質:

解析式:y=sinx

圖像

波形圖像(由單位圓投影到坐標系得出)

定義域

R(實數)

值域:

[-1,1] 最值: ①最大值:當x=(π/2)+2kπ時,y(max)=1 ②最小值:當x=-(π/2)+2kπ時,y(min)=-1 值點: (kπ,0)

對稱性:

1)對稱軸:關於直線x=(π/2)+kπ對稱 2)中心對稱:關於點(kπ,0)對稱 周期:2π

奇偶性:

奇函數

單調性:

在[-(π/2)+2kπ,(π/2)+2kπ]上是增函數,在[(π/2)+2kπ,(3π/2)+2kπ]上是減函數

餘弦函數的性質:

餘弦函數

圖像:

波形圖像

定義域:R

值域: [-1,1]

最值:

1)當x=2kπ時,y(max)=1

2)當x=2kπ+π時,y(min)=-1

零值點:(π/2+kπ,0)

對稱性:

1)對稱軸:關於直線x=kπ對稱

2)中心對稱:關於點(π/2+kπ,0)對稱

周期: 2π

奇偶性:偶函數

單調性:

在[2kπ-π,2kπ]上是增函數

在[2kπ,2kπ+π]上是減函數

定義域:{x|x≠(π/2)+kπ,k∈Z}

值域:R

最值:無最大值與最小值

零值點:(kπ,0)

對稱性:

軸對稱:無對稱軸

中心對稱:關於點(kπ,0)對稱

周期:π

奇偶性:奇函數

單調性:在(-π/2+kπ,π/2+kπ)上都是增函數

高一數學學習方法

一、 強化自主預習。

預習要做到:細讀、精讀、粗讀。所謂的細讀就是仔細閱讀教材,邊讀書邊用筆記錄一些自認為重點內容或是即時的靈感或想法。細讀包括標點符號及邊框內容讀一讀,想一想等,不放過任何一個字。最好把每一個段落的意義寫出來,當然也包括課後練習及習題要獨立完成,遇到不會的題目可以做好標記;精讀就是通過細讀後把書本標記出的重點內容,再認真看一看,想一想;粗讀就是在細讀與精讀的基礎上,快速瀏覽自學過的內容,並思考學習到什麼知識,應當注意什麼。

二、 跟上聽課節奏。

自主預習是聽好課的基礎,只要預習好,那麼聽好課並不難。高中老師講課的共同特點是節奏快。老師都會要求我們盡量要去復習及預習。因為老師在上課時,對書上很多知識都要再加工。這樣一來上課就成了最關鍵的環節,走一會神都可能使你產生一堆認識上的盲點!所以聽課要認真聽,腦袋要跟著老師的思路走,主動多動腦,主動思考,當然還需要記好筆記,筆記不是照搬黑板的東西,而應該是關鍵點,加上你自己的理解或者困惑,及時加上註解,方便回頭再復習,整理掌握。

三、 作業獨立思考。

6. 高一數學必修一重點知識歸納總結

將高中數學的重點知識歸納總結,有利於提高自己的學習效率。下面是由我為大家整理的「高一數學必修一重點知識歸納總結」,僅供參考,歡迎大家閱讀本文。

高一數學必修一知識點歸納1

一、集合有關概念

1.集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2.集合的中元素的三個特性:

(1)元素的確定性如:行兄世界上的山;

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y};

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合。

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5};

(2)集合的表示方法:列舉法與描述法。

非負整數集(即自然數集)記作:N;

正整數集:N_或N+;

整數集:Z;

有理數集:Q;

實數集:R。

1)列舉法:{a,b,c……};

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{x?R|x-3>2},{x|x-3>2};

3)語言描述法:例:{不是直角三角形的三角形}。

4、集合的分類:

(1)有限集含有有限個元素的集合;

(2)無限集譽悉含有無限個元素的集合;

(3)空集不含任何元素的集合例:{x|x2=-5}。

二、集合間的基本關系

1.「包含」關系—子集;

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA。

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)。

實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」。

即:①任何一個集合是它本身的子集。AíA。

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)。

③如果AíB,BíC,那麼AíC。

④如果AíB同時BíA那麼A=B。

3.不含任何元素的集合叫做空集,記為Φ。

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集。

三、集合的運算

運算類型交集並集補集;

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB}).

高一數學必修一知識點歸納2

1、柱、錐、台、球的結構特徵

(1)稜柱:

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點。

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊檔虛襲旋轉所成。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成。

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體。

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

4、柱體、錐體、台體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和;

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)。

高一數學必修一知識點歸納3

1.「包含」關系—子集。

注意:有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA。

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」。

即:①任何一個集合是它本身的子集。A(A。

②真子集:如果A(B,且A(B那就說集合A是集合B的真子集。

③如果A(B,B(C,那麼A(C。

④如果A(B同時B(A那麼A=B。

3.不含任何元素的集合叫做空集,記為Φ。

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集。

拓展閱讀:學習數學需要注意什麼

1、課內重視聽講,課後及時復習

接受一種新的知識,主要實在課堂上進行的,所以要重視課堂上的學習效率,找到適合自己的學習方法,上課時要跟住老師的思路,積極思考。下課之後要及時復習,遇到不懂的地方要及時去問,在做作業的時候,先把老師課堂上講解的內容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急於翻看答案。還要經常性的總結和復習,把知識點結合起來,變成自己的知識體系。

2、多做題,養成良好的解題習慣

要想學好數學,大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數學成績。剛開始做題的時候先以書上習題為主,答好基礎,然後逐漸增加難度,開拓思路,練習各種類型的解題思路,對於容易出現錯誤的題型,應該記錄下來,反復加以聯系。在做題的時候應該養成良好的解題習慣,集中注意力,這樣才能進入最佳的狀態,形成習慣,這樣在考試的時候才能運用自如。

7. 高一數學知識點有哪些

高一數學知識點總結:

1、函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x)。

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數)。

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。

2、復合函數的有關問題

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f的定義域由不等式a≤g(x)≤b解出即可;若已知f的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定。

數學

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精練早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。

以上內容參考:網路--數學