1. 八年級數學知識點下冊人教版
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二數學下冊知識點歸納
第一章一元一次不等式和一元一次不等式組
一、一般地,用符號(或),(或)連接的式子叫做不等式.
能使不等式成立的未知數的值,叫做不等式的解.不等式的解不,把所有滿足不等式的解集合在一起,構成不等式的解集.求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集:一元一次不等式組各個不等式的解集的公共部分.
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式.基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.
二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.(註:移項要變號,但不等號不變.)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質1、若ab,則a+cb+c;2、若ab,c0則acbc若c0,則ac不等式的其他性質:反射性:若ab,則bb,且bc,則ac
三、解不等式的步驟:1、去分母;2、去括弧;3、移項合並同類項;4、系數化為1.四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集.五、列一元一次不等式組解實際問題的一般步驟:(1)審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答.
六、常考題型:1、求4x-67x-12的非負數解.2、已知3(x-a)=x-a+1r的解適合2(x-5)8a,求a的范圍.
3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間.
第二章分解因式
一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形.
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數是整系數,取系數的公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.分解因式的方法:1、提公因式法.2、運用公式法.
第三章分式
註:1對於任意一個分式,分母都不能為零.
2分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.
3分式的值為零含兩層意思:分母不等於零;分子等於零.(中B0時,分式有意義;分式中,當B=0分式無意義;當A=0且B0時,分式的值為零.)
常考知識點:1、分式的意義,分式的化簡.2、分式的加減乘除運算.3、分式方程的解法及其利用分式方程解應用題.
八年級數學知識點
1、在同一平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。例1、1、在同一平面內兩條直線的位置關系為(相交)和(平行)。2、兩條直線相交成直角時,就說這兩條直線互相垂直,其…
平行四邊形矩形菱形正方形梯形等腰梯形圖形兩組對邊分別平行的四邊形。定義用「」表示平行四邊形,例如:ABCD,平行四邊形ABCD記作有一個角是直角的平有一組鄰邊相等的平行四邊形是菱形有一組鄰邊相等且…
第十八章平行四邊形的認識知識點回顧:平行四邊形、特殊平行四邊形的特徵以及彼此之間的關系1.矩形是特殊的平行四邊形,矩形的四個內角都是_____。矩形的對角線___2.菱形是特殊的平行四邊形,菱形是四條邊都__,它的兩條對角線__每條對角線平…
特殊的平行四邊形和一元二次方程的知識點歸納
【菱形】
1.菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2.菱形的性質:
(1)菱形的性質有:①平行四邊形的一切性質;②四條邊都相等;③對角線互相垂直,並且每一條對角線平分一組對角;④菱形是對稱軸圖形,它有2條對稱軸,分別為它的兩條對角線所在的直線。
(2)菱形面積=底×高=對角線乘積的一半。
3.菱形的判定:
(1)用定義判定(即一組鄰邊相等的平行四邊形是菱形)。
(2)對角線互相垂直的平行四邊形是菱形。
(3)四條邊都相等的四邊形是菱形。
綜上可知,判定菱形時常用的思路:
四條邊都相等菱形
菱形四邊形
平行
四邊形有一組鄰邊相等菱形
【矩形】
1.矩形的定義:有一個角是直角的平行四邊形叫做矩形。
2.矩形的性質:(1)具有平行四邊形的一切性質;(2)矩形的四個角都是直角;
(3)矩形的四個角都相等。
4.矩形的判定方法:
(1)用定義判定(即有一個角是直角的平行四邊形是矩形);
(2)三個角都是直角的四邊形是矩形;
(3)對角線相等的平行四邊形是矩形。
綜上可知,判定矩形時常用的思路:
【正方形】
1.正方形的定義:有一組鄰邊相等,並且有一個角是直角的平行四邊形叫做正方形。
2.正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。
(1)邊:四條邊相等,鄰邊垂直且相等,對邊平行且相等。
1(2)角:四個角都是直角。
(3)對角線:對角線相等且互相垂直平分,每條對角線平分一組對角。
初二 數學學習方法
一該記的記,該背的背,不要以為理解了就行
有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。
因此,數學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
1、「方程」的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。
物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。
所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、「數形結合」的思想
大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。
3、「對應」的思想
「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。
三自學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。
因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。
學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。
八年級數學知識點下冊相關 文章 :
★ 八年級下冊數學知識點整理
★ 八年級數學下冊知識點整理
★ 初二數學下冊知識點歸納與數學學習方法
★ 初中八年級數學下冊知識點
★ 八年級下冊數學知識點
★ 八年級數學知識點整理歸納
★ 八年級下冊數學知識點歸納
★ 初二數學下冊知識點人教版
★ 八年級下冊的數學知識點
★ 初二數學下冊知識點
2. 初二下冊數學知識點
初二下冊數學知識點有哪些你知道嗎?初二是學習數學的一個關鍵時期,想要學好數學需要有一個好的 學習 方法 ,其實最簡單又有效的學習方法就是對知識點進行歸納 總結 了。一起來看看初二下冊數學知識點,歡迎查閱!
初二下冊數學總結
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
第三章勾股定理
1勾股定理:直角三角形的`兩個直角邊的平方和等於斜邊的平方
2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形
第四章四邊形
1平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等於斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析
加權平均數、中位數、眾數、極差、方差
初二必備數學知識
位置與坐標
1、確定位置
在平面內,確定物體的位置一般需要兩個數據。
2、平面直角坐標系及有關概念
①平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
②坐標軸和象限
為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。
③點的坐標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
④不同位置的點的坐標的特徵
a、各象限內點的坐標的特徵
點P(x,y)在第一象限→ x>0,y>0
點P(x,y)在第二象限 → x<0,y>0
點P(x,y)在第三象限 → x<0,y<0
點P(x,y)在第四象限 → x>0,y<0
b、坐標軸上的點的特徵
點P(x,y)在x軸上 → y=0,x為任意實數
點P(x,y)在y軸上 → x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上→ x,y同時為零,即點P坐標為(0,0)即原點
c、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上 → x與y相等
點P(x,y)在第二、四象限夾角平分線上 → x與y互為相反數
d、和坐標軸平行的.直線上點的坐標的特徵
位於平行於x軸的直線上的各點的縱坐標相同。
位於平行於y軸的直線上的各點的橫坐標相同。
e、關於x軸、y軸或原點對稱的點的坐標的特徵
點P與點p』關於x軸對稱 橫坐標相等,縱坐標互為相反數,即點P(x,y)關於x軸的對稱點為P』(x,-y)
點P與點p』關於y軸對稱 縱坐標相等,橫坐標互為相反數,即點P(x,y)關於y軸的對稱點為P』(-x,y)
點P與點p』關於原點對稱,橫、縱坐標均互為相反數,即點P(x,y)關於原點的對稱點為P』(-x,-y)
f、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
點P(x,y)到x軸的距離等於 ?y?
點P(x,y)到y軸的距離等於 ?x?
點P(x,y)到原點的距離等於 √x2+y2
初二數學常考知識
一次函數
1、函數
一般地,在某一變化過程中有兩個變數x與y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中x是自變數,y是因變數。
2、自變數取值范圍
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
3、函數的三種表示法及其優缺點
關系式(解析)法兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。
列表法把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
圖象法用圖象表示函數關系的方法叫做圖象法。
4、由函數關系式畫其圖像的一般步驟
列表:列表給出自變數與函數的一些對應值。
描點:以表中每對對應值為坐標,在坐標平面內描出相應的點。
連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
5、正比例函數和一次函數
①正比例函數和一次函數的概念
一般地,若兩個變數x,y間的關系可以表示成y=kx+b (k,b為常數,k不等於 0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。
特別地,當一次函數y=kx+b中的b=0時(k為常數,k 不等於0),稱y是x的正比例函數。②一次函數的圖像:
所有一次函數的圖像都是一條直線。
③一次函數、正比例函數圖像的主要特徵
一次函數y=kx+b的圖像是經過點(0,b)的直線;
初二下冊數學知識點相關 文章 :
★ 八年級下冊數學知識點整理
★ 初二數學下冊知識點歸納與數學學習方法
★ 八年級下冊數學知識點總結歸納
★ 初二數學知識點整理歸納
★ 八年級數學知識點整理歸納
★ 八年級數學知識點總結
★ 初二數學知識點復習整理
★ 初二數學知識點小結
★ 初中數學八年級重點
★ 初二數學知識點歸納上冊人教版
3. 八年級數學重要知識點
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二下冊數學知識點歸納北師大版
第一章分式
1、分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2、分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3、整數指數冪的加減乘除法
4、分式方程及其解法
第二章反比例函數
1、反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2、反比例函數在實際問題中的應用
第三章勾股定理
1、勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
初二數學下冊知識點歸納
【直角三角形】
◆備考兵法
1.正確區分勾股定理與其逆定理,掌握常用的勾股數.
2.在解決直角三角形的有關問題時,應注意以勾股定理為橋梁建立方程(組)來解決問題,實現幾何問題代數化.
3.在解決直角三角形的相關問題時,要注意題中是否含有特殊角(30°,45°,60°).若有,則應運用一些相關的特殊性質解題.
4.在解決許多非直角三角形的計算與證明問題時,常常通過作高轉化為直角三角形來解決.
5.折疊問題是新中考 熱點 之一,在處理折疊問題時,動手操作,認真觀察,充分發揮空間 想像力 ,注意折疊過程中,線段,角發生的變化,尋找破題思路.
【三角形的重心】
已知:△ABC中,D為BC中點,E為AC中點,AD與BE交於O,CO延長線交AB於F。求證:F為AB中點。
證明:根據燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。
重心的幾條性質:
1.重心和三角形3個頂點組成的3個三角形面積相等。
2.重心到三角形3個頂點距離的平方和最小。
3.在平面直角坐標系中,重心的坐標是頂點坐標的算術平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標系——橫坐標:(X1+X2+X3)/3縱坐標:(Y1+Y2+Y3)/3豎坐標:(Z1+Z2+Z3)/3
4重心到頂點的距離與重心到對邊中點的距離之比為2:1。
5.重心是三角形內到三邊距離之積的點。
如果用塞瓦定理證,則極易證三條中線交於一點。
初二數學 學習 經驗 心得
學好初中數學課前要預習
初中生想要學好數學,那麼就要利用課前的時間將課上老師要講的內容預習一下。初中數學課前的預習是要明白老師在課上大致所講的內容,這樣有利於和方便初中生整理知識結構。
初中生 課前預習 數學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結構。
2學習初中數學課上是關鍵
初中生想要學好學生,在課上就是一個字:跟。上初中數學課時跟住老師,老師講到哪裡一定要跟上,仔細看老師的板書,隨時知道老師講的是哪裡,涉及到的知識點是什麼。有的初中生喜歡記筆記,提醒大家,初中數學課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課後完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
3課後可以適當做一些初中數學基礎題
在每學完一課後,初中生可以在課後做一些初中數學的基礎題型,在做這樣的題時,建議大家是,不要出現錯誤的情況,做完題後要學會思考和整理。當你的初中數學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數學的學習有幫助的,但是如果將重點放在這上面,沒有什麼好處。同時要學會整理,將自己錯題歸納並 總結 ,
數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.
八年級數學重要知識點相關 文章 :
★ 八年級數學知識點整理歸納
★ 八年級數學知識點整理
★ 初二數學上冊知識點總結
★ 八年級數學知識點歸納
★ 八年級數學知識點歸納總結
★ 初二數學知識點總結
★ 八年級數學知識點總結
★ 八年級數學知識點總結歸納
★ 初二數學知識點復習整理
4. 【初中數學】湘教版初二八年級上冊數學課本知識點總結
【初中數學】湘教版初二八年級上冊數學課本知識點總結
以下是本學期數學課程的主要知識點總結。建議收藏以便日後復習。
1. 代數表達式與方程:學習如何表示數學關系,解一元一次方程和一元二次方程。
2. 函數概念:掌握函數的定義、表示方法,理解函數圖像與性質。
3. 不等式:學習一元一次不等式和一元一次不等式組的解法。
4. 平面向量:理解向量的基本概念、運算及其應用。
5. 三角函數:掌握基本三角函數的定義、圖像和性質,學會解決與三角函數相關的應用題。
6. 幾何圖形:復習三角形、四邊形、圓等幾何圖形的性質、定理,學習證明和計算。
7. 數學證明:掌握幾何證明的基本方法和步驟,培養邏輯推理能力。
8. 數據分析:學習收集、整理和分析數據的基本方法,理解概率和統計的基本概念。
以上是【初中數學】湘教版初二八年級上冊數學課本的主要知識點。通過本學期的學習,希望同學們能夠提高數學思維能力,熟練掌握相關知識和技巧。
如果您需要電子版的教材或復習資料,可以參考以下鏈接:
zhuanlan.hu.com/p/12...
另外,好學熊資料庫提供初中全科目的學習資料,包括復習資料、中考總復習等電子版資料,歡迎訪問查閱。
5. 初二數學必備知識點
學習的三個必要條件是:多觀察、多吃苦、多研究。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。
3、勾股數
滿足的三個正整數,稱為勾股數。
常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。
二、證明
1、對事情作出判斷的 句子 ,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內角和定理:三角形三個內角的和等於180度。
(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內角是互為補角。
3、三角形的外角與它不相鄰的內角關系
(1)三角形的一個外角等於和它不相鄰的兩個內角的和。
(2)三角形的一個外角大於任何一個和它不相鄰的內角。
4、證明一個命題是真命題的基本步驟
(1)根據題意,畫出圖形。
(2)根據條件、結論,結合圖形,寫出已知、求證。
(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。
八年級 下冊數學復習資料
【零指數冪與負整指數冪】
重點:冪的性質(指數為全體整數)並會用於計算以及用科學記數法表示一些絕對值較小的數
難點:理解和應用整數指數冪的性質。
一、復習練習:
1、;=;=,=,=。
2、不用計算器計算:÷(—2)2—2-1+
二、指數的范圍擴大到了全體整數.
1、探索
現在,我們已經引進了零指數冪和負整數冪,指數的范圍已經擴大到了全體整數.那麼,在「冪的運算」中所學的冪的性質是否還成立呢?與同學們討論並交流一下,判斷下列式子是否成立.
(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指數的范圍已經擴大到了全體整數後,冪的運演算法則仍然成立。
3、例1計算(2mn2)-3(mn-2)-5並且把結果化為只含有正整數指數冪的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4練習:計算下列各式,並且把結果化為只含有正整數指數冪的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科學記數法
1、回憶:在之前的學習中,我們曾用科學記數法表示一些絕對值較大的數,即利用10的正整數次冪,把一個絕對值大於10的數表示成a×10n的形式,其中n是正整數,1≤∣a∣<10.例如,864000可以寫成8.64×105.
2、類似地,我們可以利用10的負整數次冪,用科學記數法表示一些絕對值較小的數,即將它們表示成a×10-n的形式,其中n是正整數,1≤∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10-4=
10-5=
歸納:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一個納米粒子的直徑是35納米,它等於多少米?請用科學記數法表示.
分析我們知道:1納米=米.由=10-9可知,1納米=10-9米.
所以35納米=35×10-9米.
而35×10-9=(3.5×10)×10-9
=35×101+(-9)=3.5×10-8,
所以這個納米粒子的直徑為3.5×10-8米.
5、練習
①用科學記數法表示:
(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.
②用科學記數法填空:
(1)1秒是1微秒的1000000倍,則1微秒=_________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;(4)1納米=_________微米;
(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.
初二數學復習提綱方法
一、克服心理疲勞
第一,要有明確的學習目的。學習就像從河裡抽水,動力越足,水流量越大。動力來源於目的,只有樹立正確的學習目的,才會產生強大的學習動力;第二,要培養濃厚的學習興趣。興趣的形成與大腦皮層的興奮中心相聯系,並伴有愉快、喜悅、積極的情緒體驗。而心理疲勞的產生正是大腦皮層抵制的消極情緒引起的。因此,培養自己的學習興趣,是克服心理疲勞的關鍵所在。有了興趣,學習才會有積極性、自覺性、主動性,才能使心理處於一種良好的競技狀態;第三,要注意學習的多樣化,書本學習本身就是枯燥單調的,如果多次重復學習某門課程或章節內容,易使大腦皮層產生抑制,出現心理飽和,產生厭倦情緒。所以考生不妨將各門課程交替起來進行復習。
二、戰勝高原現象
復習中的高原現象,是指在復習到一定時期時,往往停滯不前,不僅復習不見進步,反而有退步的現象。在高原期內,並非學習毫無進步,而是某部分進步,另外一些部分則退步,兩者相抵,致使復習成效未從根本上發生變化,因而使人灰心失望。當考生在復習迎考過程中遭遇高原期時,切忌急躁或喪失信心,應找出學習方法、學習積極性等方面的原因。及時調整復習進度,在科學用腦、提高復習效率上多下功夫。
三、重視復習「錯誤」
如果在復習中不善於從錯誤中走出來,缺陷和漏洞就會越來越多,任其下去,最終就會蟻穴潰堤。在備考期間,要想降低錯誤率,除了及時訂正、全面扎實復習之外,非常關鍵的問題就是找出原因,不斷復習錯誤。即定期翻閱錯題,回想錯誤的原因,並對各種錯題及錯誤原因進行分類整理。對其中那些反復錯誤的問題還可考慮再做一遍,以絕「後患」。錯誤原因大致有:概念理解上的問題、粗心大意帶來的問題以及書寫潦草凌亂給自己帶來的錯覺問題等,從而有效地避免在考試時再犯同一類型的錯誤。
四、把握心理特點搞好考前復習
實踐證明,一個人在氣質、性格、心理穩定程度等因素也會影響考前復習。考生在復習迎考過程中,應根據自己的心理特點來制訂復習迎考計劃,根據自己的心態來調整復習的進度,選擇與運用的復習方式方法,使自己的考前復習達到預期的效果。
1、課本不容忽視
對於初二的學生來說,都在學習新課,課本是大家都容易忽視的一個重要的復習資料。平時在學校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學們在翻看筆記的同時,對照課本,把學過的知識點反復閱讀、理解,並對照課後練習里的習題進行反復思考、琢磨、融會貫通,加深對知識點的理解。對於課本上的重點內容、重點例題也要著重記憶。
2、錯題本
相信學習習慣好的學生都應該有一本錯題本,把每次習題、作業、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發現自己知識和能力上的薄弱點,經常拿出來翻看,遇到反復做錯的題目,要主動和同學商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。
初二數學必備知識點相關 文章 :
★ 初二數學重要知識點
★ 初二數學基礎知識點歸納
★ 初二數學知識點歸納梳理
★ 初二數學知識點歸納整理
★ 初二數學知識點整理
★ 初二數學知識點復習整理
★ 初二數學知識點整理歸納
★ 初二數學知識點歸納上冊人教版
★ 初二數學知識點歸納
★ 初二數學課文知識點
6. 初二數學知識點歸納!干貨分享!
初二數學知識點歸納,以下是精華內容概述:
一、基礎知識概要
- 三角形定義:由不在同一直線上的三條線段首尾相連形成圖形,其性質包括三邊關系(任意兩邊之和大於第三邊,兩邊之差小於第三邊)和高、中線、角平分線的概念。
- 多邊形定義:由線段首尾相連組成,內角和外角的定義,以及對角線的概念。
二、平行四邊形與特殊四邊形
- 平行四邊形特點:對邊相等、對角相等、對角線平分。判定方法有四邊形對邊和對角的條件。
- 特殊四邊形如矩形(直角和對角線相等)、菱形(四邊相等,對角線垂直)和正方形(矩形和菱形的結合)。
三、梯形與二次根式
- 梯形分類如直角梯形(同一底邊兩角相等)和等腰梯形(對角線等長)。
- 二次根式的定義和化簡規則,包括最簡二次根式和同類二次根式的概念。
學習初二數學,關鍵在於理解概念、掌握方法,並運用到實際問題中。孩子的學習需要科學規劃和專業引導,越早開始越好。以上知識點總結,希望能幫助大家提升孩子的數學水平。