當前位置:首頁 » 基礎知識 » 初一數學知識點必背題
擴展閱讀
英語知識畫報七年級 2024-11-23 23:44:57
鮮味的冷知識大全 2024-11-23 23:39:07

初一數學知識點必背題

發布時間: 2024-11-23 20:56:17

『壹』 初一數學必考知識點總結歸納

初中數學的必考知識點大都在初一的課程里,所以初一的學生學好數學很重要。以下是我分享給大家的初一數學必考知識點,希望可以幫到你!
初一數學代數初步知識必考知識點
1. 代數式:用運算符號“+ - × ÷ …… ”連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用“· ” 乘,或省略不寫;

(2)數與數相乘,仍應使用“×”乘,不用“· ”乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .

3.幾個重要的代數式:(m、n表示整數)

(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;

(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;

(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
初一數學有理數必考知識點
1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;

(2)有理數的分類: ① ②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數 0和正整數;a>0 a是正數;a<0 a是負數;

a≥0 a是正數或0 a是非負數;a≤ 0 a是負數或0 a是非正數.

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

(3)相反數的和為0 a+b=0 a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;

(3) ; ;

(4) |a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|, .

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;倒數是本身的數是±1;若ab=1 a、b互為倒數;若ab=-1 a、b互為負倒數.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 a=0,b=0;

(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.

19.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種方法,但不能用於證明.
初一數學整式的加減必考知識點
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.

5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.

整式分類為:

6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.

7.合並同類項法則:系數相加,字母與字母的指數不變.

8.去(添)括弧法則:去(添)括弧時,若括弧前邊是“+”號,括弧里的各項都不變號;若括弧前邊是“-”號,括弧里的各項都要變號.

9.整式的加減:整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並.

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.

猜你喜歡:

1. 初一數學上冊知識點匯總整理

2. 7年級上冊數學知識點歸納

3. 初一數學知識點整理

4. 人教版七年級數學復習知識點

5. 初一數學上冊知識點匯總歸納

6. 初一數學上冊知識點復習

『貳』 初一數學知識點有哪些

數學會考必背公式知識點如下:

1、勾股定理:三條直線上兩個點之間的距離關系,即a2+b2=c2。

2、餘弦定理:兩條相交直線所成的兩個直角三角形,c2=a2+b2+abXcosC。

3、正弦定理:兩條相交的直線所組成的兩個直角三角形,sinA/a=sinB/b=sinC/C。

4、梯形公式:面積之和,即(a+b)h/2。

5、圓面積公式:r2。

6、三角形面積公式:S=1/2XaXbXsinC。

數學的重要性:

1、數學是一門重要的科學,也是一門基礎科學,具有超越於具體科學之上、普遍適用的特徵。

2、數學對我們的日常生活非常有用。

3、學數學有利於培養更好地思考和解決問題的能力。



『叄』 初一必背的數學公式

初一必背的數學公式如下:

四、三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

五、圖形面積公式

直稜柱側面積:S=c*h

斜稜柱側面積:S=c'*h

正棱錐側面積:S=1/2c*h'

正稜台側面積:S=1/2(c+c')h'

圓台側面積:S=1/2(c+c')l=pi(R+r)l

球的表面積:S=4pi*r2

圓柱側面積:S=c*h=2pi*h

圓錐側面積:S=1/2*c*l=pi*r*l

弧長公式:l=a*r.a是圓心角的弧度數r>0

扇形面積公式:s=1/2*l*r

錐體體積公式:V=1/3*S*H

圓錐體體積公式:V=1/3*pi*r2h

斜稜柱體積:V=S'L註:其中,S'是直截面面積,L是側棱長

柱體體積公式:V=s*h;圓柱體V=pi*r2h

『肆』 初一數學第一單元必考題目有哪些

如下:

1、列代數式問題。

舉例:甲樓比丙樓高24.5米,乙樓比丙樓高15.6米,則乙樓比甲樓低多少米。

解:設丙樓高為x米,那麼甲樓高(x+ 24.5)米,乙樓高(x+ 16.5)米,(X+ 16.5)-(x+ 24.5)=-8.9,即乙樓比甲樓低8.9米。

2、有理數的計算問題。

舉例:計算(1/1998-1)(1/1997-1)(1/1000-1)=___

試題分析:逆用有理數的減法法則,轉化成分數連乘。

解:原式=-(1997/1998)(1996/1997)(999/1000)=-1/2

3、和差問題。

已知兩數的和與差,求這兩個數。

口訣:和加上差,越加越大;除以2,便是大的;和減去差,越減越小;除以2,便是小的。

4、差比問題。

口訣:我的比你多,倍數是因果。分子實際差,分母倍數差。商是一倍的,乘以各自的倍數,兩數便可求得。

初一數學上學期期中考試必考知識點和注意事項

1、數軸

數軸的概念:規定了原點、正方向、單位長度的直線叫作數軸。數軸的三要素:原點,單位長度,正方向。

數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數。(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數。)

用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大。

2、相反數

相反數的概念:只有符號不同的兩個數叫作互為相反數.

相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。

多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正。

『伍』 初一數學重要基礎知識

學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那隻能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

七年級數學 知識點

【變數之間的關系】

一理論理解

1、若Y隨X的變化而變化,則X是自變數Y是因變數。

自變數是主動發生變化的量,因變數是隨著自變數的變化而發生變化的量,數值保持不變的量叫做常量。

3、若等腰三角形頂角是y,底角是x,那麼y與x的關系式為y=180-2x.

2、能確定變數之間的關系式:相關公式①路程=速度×時間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×時間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間

二、列表法:採用數表相結合的形式,運用表格可以表示兩個變數之間的關系。列表時要選取能代表自變數的一些數據,並按從小到大的順序列出,再分別求出因變數的對應值。列表法的特點是直觀,可以直接從表中找出自變數與因變數的對應值,但缺點是具有局限性,只能表示因變數的一部分。

三.關系式法:關系式是利用數學式子來表示變數之間關系的等式,利用關系式,可以根據任何一個自變數的值求出相應的因變數的值,也可以已知因變數的值求出相應的自變數的值。

四、圖像注意:a.認真理解圖象的含義,注意選擇一個能反映題意的圖象;b.從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標),特別是圖像的起點、拐點、交點

八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:

1.隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而增加(大));

2.隨著自變數x的逐漸增加(大),因變數y逐漸減小(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而減小).

注意:如果在整個過程中事物的變化趨勢不一樣,可以採用分段描述.例如在什麼范圍內隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)等等.

九、估計(或者估算)對事物的估計(或者估算)有三種:

1.利用事物的變化規律進行估計(或者估算).例如:自變數x每增加一定量,因變數y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數-首數)/次數或相差年數)等等;

2.利用圖象:首先根據若干個對應組值,作出相應的圖象,再在圖象上找到對應的點對應的因變數y的值;

3.利用關系式:首先求出關系式,然後直接代入求值即可.

初一數學知識點

解一元一次方程:

1.解一元一次方程的一般步驟

去分母、去括弧、移項、合並同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。

2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括弧,且括弧外的項在乘括弧內各項後能消去分母,就先去括弧。

3.在解類似於「ax+bx=c」的方程時,將方程左邊,按合並同類項的 方法 並為一項即(a+b)x=c。

使方程逐漸轉化為ax=b的最簡形式體現化歸思想。

將ax=b系數化為1時,要准確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要准確判斷符號,a、b同號x為正,a、b異號x為負。

14、一元一次方程的應用

1.一元一次方程解應用題的類型

(1)探索規律型問題;

(2)數字問題;

(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);

(4)工程問題(①工作量=人均效率×人數×時間;②如果一件工作分幾個階段完成,那麼各階段的工作量的和=工作總量);

(5)行程問題(路程=速度×時間);

(6)等值變換問題;

(7)和,差,倍,分問題;

(8)分配問題;

(9)比賽積分問題;

(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).

2.利用方程解決實際問題的基本思路:

首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然後用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。

列一元一次方程解應用題的五個步驟

(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.

(2)設:設未知數(x),根據實際情況,可設直接未知數(問什麼設什麼),也可設間接未知數.

(3)列:根據等量關系列出方程.

(4)解:解方程,求得未知數的值.

(5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.

初一數學方法技巧

1.請概括的說一下學習的方法

曰:「像做其他事一樣,學習數學要研究方法。我為你們推薦的方法是:超前學習,展開聯想,多做 總結 ,找出合情合理。

2.請談談超前學習的好處

曰:「首先,超前學習能挖掘出自身的潛力,培養自學能力。經過超前學習,會發現自己能獨立解決許多問題,對提高自信心,培養學習興趣很有幫助。」

其次,夠消除對新知識的「隱患」。超前學習能夠發現在現有的基礎上,自己對新知識認識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達到這種理解水平,實踐證明,並非這樣。

再次,超前學習中的有些內容,當時不能透徹理解,但經過深思之後,即使擱置一邊,大腦也會潛意識「加工」。當教師進度進行到這塊內容時,我們做第二次理解,會深刻的多。

最後,超前學習能提高聽課質量。超前學習以後,我們發現新知識中的多數自己完全可以理解。只有少數地方需藉助於別人。這樣,在課堂上,我們即能將可以集中注意力的時間放「這少數地方」的理解上,即「好鋼用在刀刃上」。事實上,一節課,能集中注意力的時間並不太多。

3.請談談聯想與總結

曰:聯想與總結貫穿與學習過程中的始終。對每一知識的認識,必定要有認識基礎。尋找認識基礎的過程即是聯想,而認識基礎的是對以前知識的總結。以前總結的越簡潔、清晰、合理,越容易聯想。這樣就可以把新知識熔進原來的知識結構中為以後的某次聯想奠定基礎。聯想與總結在解題中特別有效。也許你以前並沒有這樣的認識,但解題能力卻很強,這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認識這一點,你的能力會更強。

4.那麼我們怎樣預習呢?

曰:「先 說說 學習的目標:(1)知道知識產生的背景,弄清知識形成的過程。

(2)或早或晚的知道知識的地位和作用:(3)總結出認識問題的規律(或說出認識問題使用了以前的什麼規律)。

再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要藉助具體的東西加以理解。有時藉助字面的含義:有時藉助其他學科知識。有時藉助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫後再做題。

(2)對公式定理的預習,公式定理是使用最多的「規律」的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。

(3)對於例題及習題的處理見上面的(2)及下面的第五條。


初一數學重要基礎知識點相關 文章 :

★ 初一數學重要知識點總結

★ 初一數學基礎知識有哪些?

★ 初中數學基礎知識點總結

★ 初一數學上冊知識點大全

★ 初中數學基礎知識整理歸納

★ 初一數學知識點歸納

★ 初中數學基礎知識點歸納總結

★ 初一數學知識點歸納與學習方法

★ 初一數學必考的21個知識點,附考試重難點

★ 初一數學必考的23個知識點,考試必掌握的重難點

『陸』 2022初一數學必背知識點

在學習中,說起知識點,應該沒有人不熟悉吧?知識點也不一定都是文字,數學的知識點除了定義,同樣重要的公式也可以理解為知識點。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初中 一年級數學 上冊知識點

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

七年級下冊數學知識點

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

七年級數學 上冊期末復習資料

-----------3.1一元一次方程及其解法

①方程是含有未知數的等式。

②方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的整式方程叫做一元一次方程。

③注意判斷一個方程是否是一元一次方程要抓住三點:

1)未知數所在的式子是整式(方程是整式方程);

2)化簡後方程中只含有一個未知數;(系數中含字母時不能為零)

3)經整理後方程中未知數的次數是1.

④解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。方程的解代入滿足,方程成立。

⑤等式的性質:

1)等式兩邊同時加上或減去同一個數或同一個式子(整式或分式),等式不變(結果仍相等)。a=b得:a+(-)c=b+(-)c

2)等式兩邊同時乘以或除以同一個不為零的數,等式不變。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)

注意:運用性質時,一定要注意等號兩邊都要同時+、-、×、÷;運用性質2時,一定要注意0這個數。

⑥解一元一次方程一般步驟:

去分母(方程兩邊同乘各分母的最小公倍數)→去括弧→移項→合並同類項→系數化1;

以上是解一元一次方程五個基本步驟,在實際解方程的過程中,五個

步驟不一定完全用上,或有些步驟還需要重復使用.因此,解方程時,

要根據方程的特點,靈活選擇 方法 .在解方程時還要注意以下幾點:

⑴去分母:在方程兩邊都乘以各分母的最小公倍數,不要漏乘不含

分母的項;分子是一個整體,去分母後應加上括弧;

注意:去分母(等式的基本性質)與分母化整(分數的基本性質)是兩個概念,不能混淆;

⑵去括弧:遵從先去小括弧,再去中括弧,最後去大括弧不要漏乘括弧的項;不要弄錯符號(連著符號相乘);

⑶移項:把含有未知數的項移到方程的一邊,其他項都移到方程的另一邊(以=為界限),移項要變號;

⑷合並同類項:不要丟項,解方程是同解變形,每一步都是一個方程,

不能像計算或化簡題那樣寫能連等的形式.

⑸系數化1:(兩邊同除以未知數的系數)把方程化成ax=b(a≠0)

的形式,字母及其指數不變系數化成1在方程兩邊都除以未知數的系數a,得到方程的解不要分子、分母搞顛倒(一步一步來)

七年級數學期中上冊知識點

第一章豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和 面相 交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

生活中的立體圖形

柱:稜柱:三稜柱、四稜柱(長方體、正方體)、五稜柱……

正有理數整數

有理數零有理數

負有理數分數

2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零

3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。

4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。

5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。互為相反數的兩個數的絕對值相等。

6、有理數比較大小:正數大於0,負數小於0,正數大於負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。

7、有理數的運算:

(1)五種運算:加、減、乘、除、乘方

多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。

有理數加法法則:

同號兩數相加,取相同的符號,並把絕對值相加。

異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。

一個數同0相加,仍得這個數。

互為相反數的兩個數相加和為0。

有理數減法法則:減去一個數,等於加上這個數的相反數!

有理數乘法法則:

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積仍為0。

有理數除法法則:

兩個有理數相除,同號得正,異號得負,並把絕對值相除。

0除以任何非0的數都得0。

注意:0不能作除數。

有理數的乘方:求n個相同因數a的積的運算叫做乘方。

正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。

(2)有理數的運算順序

先算乘方,再算乘除,最後算加減,如果有括弧,先算括弧裡面的。

(3)運算律

加法交換律加法結合律

乘法交換律乘法結合律

乘法對加法的分配律

8、科學記數法

一般地,一個大於10的數可以表示成的形式,其中,n是正整數,這種記數方法叫做科學記數法。(n=整數位數-1)

第三章整式及其加減

1、代數式

用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。

注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;

②代數式中不含有「=、>、<、≠」等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;

③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。

※代數式的書寫格式:

①代數式中出現乘號,通常省略不寫,如vt;

②數字與字母相乘時,數字應寫在字母前面,如4a;

③帶分數與字母相乘時,應先把帶分數化成假分數,如應寫作;

④數字與數字相乘,一般仍用「×」號,即「×」號不省略;

⑤在代數式中出現除法運算時,一般寫成分數的形式,如4÷(a-4)應寫作;注意: 分數線 具有「÷」號和括弧的雙重作用。

⑥在表示和(或)差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如平方米。

2、整式:單項式和多項式統稱為整式。

①單項式:都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。

注意:1.單獨的一個數或一個字母也是單項式;2.單獨一個非零數的次數是0;3.當單項式的系數為1或-1時,這個「1」應省略不寫,如-ab的系數是-1,a3b的系數是1。

②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數的項的次數叫做多項式的次數。

3、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。

②同類項與系數無關,與字母的排列順序無關;

③幾個常數項也是同類項。

4、合並同類項法則:把同類項的系數相加,字母和字母的指數不變。

5、去括弧法則

①根據去括弧法則去括弧:

括弧前面是「+」號,把括弧和它前面的「+」號去掉,括弧里各項都不改變符號;括弧前面是「-」號,把括弧和它前面的「-」號去掉,括弧里各項都改變符號。

②根據分配律去括弧:

括弧前面是「+」號看成+1,括弧前面是「-」號看成-1,根據乘法的分配律用+1或-1去乘括弧里的每一項以達到去括弧的目的。

6、添括弧法則

添「+」號和括弧,添到括弧里的各項符號都不改變;添「-」號和括弧,添到括弧里的各項符號都要改變。

7、整式的運算:

整式的加減法:(1)去括弧;(2)合並同類項。

2022初一數學必背知識點相關 文章 :

★ 2022中考數學知識點梳理

★ 2022中考數學知識點歸納

★ 2022初三數學備戰中考復習知識點大全

★ 2022年高考數學必考知識點總結最新

★ 2022高考數學必考知識點考點總結大全

★ 2022高考數學必考知識點歸納最新

★ 2022初一數學教學工作計劃最新

★ 2022七年級數學知識點

★ 2022高一必修二數學知識點歸納

★ 初一數學教學總結及反思2022年

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();