當前位置:首頁 » 基礎知識 » 七年級下冊數學華師版知識點整理
擴展閱讀
典獄司的歌詞什麼意思 2024-11-22 17:31:24
影視動漫設計要學習什麼 2024-11-22 17:31:22

七年級下冊數學華師版知識點整理

發布時間: 2024-11-22 10:52:51

❶ 華師大版七年級數學知識點總結

七年級數學知識點
第一章 走進數學世界
第二章 有理數
1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。
2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位於原點的兩側,並且到原點的距離相等。
3.倒數:若兩個數的積等於1,則這兩個數互為倒數。
4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;幾何意義:一個數的絕對值,就是在數軸上表示這個數的點到原點的距離.
5.科學記數法: ,其中 。 6.實數大小的比較:利用法則比較大小;利用數軸比較大小。
7.在實數范圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用於實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的關鍵。
第三章 整式的加減
一、整式的有關概念
1、單項式:數與字母乘積,這樣的代數式叫單項式。單獨的一個數或字母也是單項式。
2、單項式的系數:單項式中的數字因數。
3、單項式的次數:單項式中所有的字母的指數和。
4、多項式:幾個單項式的和叫多項式。
5、多項式的項及次數:組成多項式中的單項式叫多項式的項,多項式中次數最高項的次數叫多項式的次數。特別注意,多項式的次數不是組成多項式的所有字母指數和!!!
6、整式:單項式與多項式統稱整式。(分母含有字母的代數式不是整式)
二、整式的運算
(一)整式的加減法 基本步驟:去括弧,合並同類項。
(二)整式的乘法
1、同底數的冪相乘 法則:同底數的冪相乘,底數不變,指數相加。 數學符號表示:___ (其中m、n為正整數)
2、冪的乘方 法則:冪的乘方,底數不變,指數相乘。 數學符號表示:_______ (其中m、n為正整數)
3、積的乘方 法則:積的乘方,先把積中各因式分別乘方,再把所得的冪相乘。(即等於積中各因式乘方的積。數學符號表示:_______ (其中n為正整數)
4、同底數的冪相除 法則:同底數的冪相除,底數不變,指數相減。 數學符號表示:___ (其中m、n為正整數)
5、單項式乘以單項式 法則:單項式乘以單項式,把它們的系數、相同字母的冪分別相乘,其餘的字母則連同它的指數不變,作為積的一個因式。
6、單項式乘以多項式 法則:單項式乘以多項式,就是根據分配律用單項式的去乘多項式的每一項,再把所得的積相加。
7、多項式乘以多項式 法則:多項式乘以多項式,先用一個多項式的每一項去乘另一個多項式的每一項,再把所得的積相加。
8、平方差公式 法則: 兩數的各乘以這兩數的差,等於這兩數的平方差。 數學符號表示:_____ (其中a、b既可以是數,也可以是代數式) 說明:平方差公式是根據多項式乘以多項式得到的,它是兩個數的和與同樣的兩個數的差的積的形式。
9、完全平方公式 法則:兩數和(或差)的平方,等於這兩數的平方和再加上(或減去)這兩數積的2倍。
數學符號表示: ______
(二)整式的除法
1、單項式除以單項式 法則:單項式除以單項式,把它們的系數、相同字母的冪分別相除後,作為商的一個因式,對於只在被除式里含有的字母,則連同它的指數一起作為商的一個因式。
2、多項式除以單項式 法則:多項式除以單項式,就是多項式的每一項去除以單項式,再把所得的商相加。
第四章 圖形初步認識
1.點、線、面:通過豐富的實例,進一步認識點、線、面(如交通圖上用點表示城市,屏幕上的畫面是由點組成的)。2.角 ①通過豐富的實例,進一步認識角。②會比較角的大小,能估計一個角的大小,會計算角度的和與差,識別度分、秒,會進行簡單換算。 ③了解角平分線及其性質。
相交線和平行線
一、基本概念
1. 直線:(1)直線是向__________無限延伸的,直線沒有端點。(2)經過兩點有且只有一條__________。
2.射線:直線上一點和它一旁的部分叫做__________,這個點叫做射線的端點,射線只有一個端點。
2. 線段:(1)直線上兩點之間的部分叫做__________,__________有兩個端點.(2)兩點之間,__________最短。
(3)把一條線段分成兩條相等線段的點,叫做線段的__________。
4.垂線;當兩條直線相交所構成的四個角中有一個角是__________時,叫做兩條直線互相垂直;其中一條直線叫做另一條直線的垂線,它們的交點叫做__________。
5、垂線的性質:(1)經過一點,有且只有___條直線和已知直線垂直;(2)直線外一點與直線上各點連結的所有線段中,__最短。
6.兩點間的距離:連結__________的線段的長度。
7.點到直線的距離:從直線外一點到__________的垂線段的長度。
8.兩條平行線間的距離:兩條平行線中一條直線上__________到另一條直線的距離。
9、角:有公共端,點的兩條__________組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條_____叫做角的邊。
10、角平分線:從一個角的頂點出發,把這個角分成兩個__________的角的射線,叫做角平分線。
11.平角、周角:射線繞端點旋轉,當終止位置和起始位置成__________時,所成的角叫做平角;繼續旋轉回到__________位置時,所成的角叫做周角。
12、角的度量:1周角=__平角=___直角=360°, 1°=___』 , 1』=___」
13.小於平角的角的分類:__________角、__________角、__________角。
14.互為餘角、補角:如果兩個角的和是_,這兩個角叫做互為餘角;如果兩個角的和是_,這兩個角叫做互為補角。
15.相關角的性質:(1)對頂角______(2)同角或等角的餘角_____;(3)同角或等角的補角_______。
二、相交線和平行線
1.平行線:在同一平面內,__________的兩條直線叫做平行線。
2.在同一平面內,兩條直線的位置關系只有兩種:__________。相交時,對頂角相等。
3.平行線的判定:(1)同位角___,兩直線平行。(2)內錯角相等,兩直線_____。
(3)同旁內角__________,兩直線平行。(4)平行(或垂直)於同一直線的兩直線__________。
4、平行線的性質:(1)經過直線外一點,有且只有____條直線與這條直線平行。
(2)兩直線平行,同位角_______。(3)兩直線平行,內錯角__________。
(4)兩直線平行,同旁內角_.(5)一條直線和兩條平行線中的一條垂直(或平行),這條直線也和_垂直(或平行).
(6)平行線間的距離處處__________。(7)經過三角形一邊的中點與另一邊平行的直線必平分__________。
三、平行線分線段成比例
1.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也____。
2、平行線等分線段定理的推論:(1)經過梯形一腰的中點與底_____的直線,必平分另一腰。(2)經過三角形一邊的中點與另一邊平行的直線必平分__________。
3.平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成_________。
4.平行線分線段成比例定理的推論:__於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。5.定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段比例,那麼這條直線_於三角形的第三邊。
第五章 數據的收集與表達
 學習如何去收集數據、整理數據、分析數據並最後得到相應的結論;另外,我們還必須掌握有關頻數、頻率等知識點。
明確調查問題————數據的用途;
確定調查對象————數據收集的范圍;
選擇調查方法————收集數據所採用的方法;
展開調查——————數據收集;
記錄結果——————數據整理;
得出結論——————數據分析;
 概括:頻數表示每個對象出現的次數;
頻率表示每個對象出現的次數與總次數的比值(或者百分比)
頻數和頻率都能夠反映每個對象出現的頻繁程度。
 學會用統計來直觀來表示數據,並從統計圖中發現數據間的聯系。學會用計算機畫出統計圖。
第六章 一元一次方程
1.會對方程進行適當的變形解一元一次方程:解方程的基本思想就是轉化,即對方程進行變形,變形時要注意兩點,一時方程兩邊不能乘以(或除以)含有未知數的整式,否則所得方程與原方程的解可能不同;二是去分母時,不要漏乘沒有分母的項,一元一次方程是學習二元一次方程組、一元二次方程、一元一次不等式及函數問題的基本內容。
2.正確理解方程解的定義,並能應用等式性質巧解考題:方程的解應理解為,把它代入原方程是適合的,其方法就是把方程的解代入原方程,使問題得到了轉化。
3.理解方程ax=b在不同條件下解的各種情況,並能進行簡單應用:(1)a≠0時,方程有唯一解x= ;
(2)a=0,b=0時,方程有無數個解; (3)a=0,b≠0時,方程無解。
4.正確列一元一次方程解應用題:列方程解應用題,關鍵是尋找題中的等量關系,可採用圖示、列表等方法,根據近幾年的考試題目分析,要多關注社會熱點,密切聯系實際,多收集和處理信息,解應用題時還要注意檢查結果是否符合實際意義。
5.幾種常見的問題:和差倍分問題、等機變形問題、勞力調配問題、比例分配問題、數字問題、工程問題。
第七章 二元一次方程組
1.二元一次方程(組)及解的應用:注意:方程(組)的解適合於方程,任何一個二元一次方程都有無數個解,有時考查其整數解的情況,還經常應用方程組的概念巧求代數式的值。
2.解二元一次方程組:解方程組的基本思想是消元,常用方法是代入消元和加減消元,轉化思想和整體思想也是本章考查重點。
會用代入消元法解含有未知數系數為1的二元一次方程組。會運用代入法解未知數系數都不是1的二元一次方程組。會用加減法求未知數系數相等或互為相反數的二元一次方程組的解。學會使用方程變形,再用加減消元法解二元一次方程組。靈活運用代入消元法、加減消元法解題。
3.二元一次方程組的應用:列二元一次方程組的關鍵是能正確分析出題目中的等量關系,題目內容往往與生活實際相貼近,與社會關系的熱點問題相聯系,請平時注意搜集、觀察與分析。
第八章 一元一次不等式
1.判斷不等式是否成立:關鍵是分析判定不等號的變化,變化的依據是不等式的性質,特別注意的是,不等式兩邊都乘以(或除以)同一個負數時,要改變不等號方向;反之,若不等式的不等號方向發生改變,則說明不等式兩邊同乘以(或除以)了一個負數。因此,在判斷不等式成立與否或由不等式變形求某些字母的范圍時,要認真觀察不等式的形式與不等號方向。
2.解一元一次不等式(組):解一元一次不等式的步驟與解一元一次方程的步驟大致相同,應注意的是,不等式兩邊所乘以(或除以)的數的正負,並根據不同情況靈活運用其性質。一元一次不等式(組)常與分式、根式、一元二次方程、函數等知識相聯系,解決綜合性問題
3.求不等式(組)的特殊解:不等式(組)的解往往是有無數多個,但其特殊解在某些范圍內是有限的,如整數解、非負整數解,要求這些特殊解,首先是確定不等式(組)的解集, 然後再找到相應的答案。注意應用數形結合思想。
4.列不等式(組)解應用題:注意分析題目中的不等量關系,考查的熱點是與實際生活密切相聯的不等式(組)應用題。
第九章 多邊形
1. 多邊形:一般來說,多邊形是由一些線段依次首尾相連圍成的封閉圖形。我們通常根據多邊形的邊數將它們分為三角形、四邊形、五邊形……
2. n邊形:由n條線段依次首尾相接圍成的封閉圖形叫做叫做n邊形(n為大於或等於3的整數)。
3. 多邊形的分割:從一個多邊形的某一個頂點出發,分別連接這個頂點與其他各頂點,可以把這個多邊形分割成若干個三角形。
4. 從n邊形的一個頂點出發有(n-3)條對角線,把n邊形分成(n-2)個三角形。一個n邊形共有n個頂點,n條邊,n(n-3)÷2 條對角線。
5. 圓:一條線段繞著它的一端旋轉一周形成的圖形叫做圓。
6. 圓上兩點之間的線段叫做弧,由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。
7. 圓可以分成若干個扇形。
8. 圓上兩點(連接兩點的線段不是直徑)將圓分成兩個部分,一部分大於半圓,一部分小於半圓,因此圓上的兩點分圓成兩條弧,每條弧都對應一個扇形。
⒐了解三角形有關概念(內角、外角、中線、高、角平分線),會畫出任意三角形的角平分線、中線和高.了解三角形的穩定性。三角形兩邊之和大於第三邊。②探索並掌握三角形中位線的性質。
⒑重點: 1.四邊形的基本概念:
(1)四邊形:平面內,四條線段首尾順次相接,如果任何兩條線段都不在同一直線上,所形成的圖形叫做四邊形.
(2)各部分名稱: 邊:組成四邊形各邊的線段 頂點:相鄰兩邊的公共點 內角:從四邊形內部看相鄰兩邊所成的角,簡稱為角. 對角線:連結四邊形不相鄰的兩個頂點的線段. 外角:四邊形的一條邊與
第十章 軸對稱
 軸對稱與軸對稱圖形是不同的概念:「軸對稱」是指兩個圖形之間的形狀與位置關系 「軸對稱圖形」是指一個圖形的形狀。
 定義:有兩邊相等的三角形是等腰三角形
 等腰三角形的性質:
等腰三角形的兩個底角相等。 (簡寫成「等邊對等角」)
等腰三角形的頂角的平分線,底邊上的中線,底邊上的高的重合(簡寫成「三線合一」)
等腰三角形的兩底角的平分線相等。(兩條腰上的中線相等,兩條腰上的高相等)
等腰三角形的底邊上到兩條腰的距離相等
等腰三角形的一腰上的高與底邊的夾角等於頂角的一半
 等腰三角形的判定: 有兩個角相等的三角形是等腰三角形
 三角形的一些性質:
1.三角形的任何兩邊的和一定大於第三邊 ,由此亦可證明得三角形的任意兩邊的差一定小於第三邊。
2.三角形內角和等於180度
3.等腰三角形的頂角平分線,底邊的中線,底邊的高重合,即三線合一。
圖形的軸對稱是中考題的新題型,熱點題型。分值一般為3-4分,題型以填空,選擇,作圖為主,偶爾也會出現解答題。
考察內容:①軸對稱和軸對稱圖形的性質判別。②注意鏡面對稱與實際問題的解決。 突破方法: ①熟練掌握圖形的對稱基本性質和基本作圖法。②結合具體的問題大膽嘗試,動手操作,探究發現其內在的規律。③注重對網格內和坐標內的圖形的變換試題的研究,熟練掌握其常用的解題方法。④關注圖形與變換創新題,弄清其本質,掌握基本解題方法,如動手操作法,折疊法,旋轉法。
第十一章 體驗不確定現象
1、 必然事件:在每次實驗中一定發生的事件,發生的機會是100%。
2、 不可能事件:在每次實驗中一定不發生的事件,發生的機會是0。
(必然事件與不可能事件統稱為確定事件)
3、 不確定事件(隨機事件):無法確定在一次試驗中會不會發生的事件,發生
的機會是0~1之間的數。
4、 「不太可能」不等於「不可能」,可能性小並不意味著一定不會發生。
5.機會:不確定事件或隨機事件經過多次試驗使之趨於穩定時狀態,就是這個事件的成功率我們以後把這種成功率表示一隨機事件發生的可能性,即機會。
6.機會的均等與不等:不確定事件成功與失敗的機會各佔一半即0.50時,我們稱這不確定事件的機會均等,否則就是機會不等。
7、 不確定現象發生的機會的估計。
(1) 實驗法:通過大量重復實驗來估計。
(2) 分析法:從實驗結果的所有可能情況來確定。
8、 不確定事件在大量重復實驗中事件發生頻率的穩定性。
7、 實驗必須在相同條件下進行,實驗次數越多,得到的機會估計值就越好。
8、 實驗是估計機會大小的一種方法。

❷ 七年級數學下冊知識點華師大版

學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那隻能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

七年級數學知識點

生活中的軸對稱

1、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠完全重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、軸對稱:對於兩個圖形,如果沿一條直線對折後,它們能互相重合,那麼稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關於某條直線對稱。

3、軸對稱圖形與軸對稱的區別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關系。

聯系:它們都是圖形沿某直線折疊可以相互重合。

2、成軸對稱的兩個圖形一定全等。

3、全等的兩個圖形不一定成軸對稱。

4、對稱軸是直線。

5、角平分線的性質

1、角平分線所在的直線是該角的對稱軸。

2、性質:角平分線上的點到這個角的兩邊的距離相等。

6、線段的垂直平分線

1、垂直於一條線段並且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。

2、性質:線段垂直平分線上的點到這條線段兩端點的距離相等。

7、軸對稱圖形有:

等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數條)、線段(1條)、角(1條)、正五角星。

8、等腰三角形性質:

①兩個底角相等。②兩個條邊相等。③「三線合一」。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。

9、①「等角對等邊」∵∠B=∠C∴AB=AC

②「等邊對等角」∵AB=AC∴∠B=∠C

10、角平分線性質:

角平分線上的點到角兩邊的距離相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分線性質:垂直平分線上的點到線段兩端點的距離相等。

∵OC垂直平分AB∴AC=BC

12、軸對稱的性質

1、兩個圖形沿一條直線對折後,能夠重合的點稱為對應點(對稱點),能夠重合的線段稱為對應線段,能夠重合的角稱為對應角。2、關於某條直線對稱的兩個圖形是全等圖形。

2、如果兩個圖形關於某條直線對稱,那麼對應點所連的線段被對稱軸垂直平分。

3、如果兩個圖形關於某條直線對稱,那麼對應線段、對應角都相等。

13、鏡面對稱

1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;

2.當垂直於鏡面擺放時,鏡面會改變它的上下方向;

3.如果是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;

學生通過討論,可能會找出以下解決物體與像之間相互轉化問題的辦法:

(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質;

(3)可以把數字左右顛倒,或做簡單的軸對稱圖形;

(4)可以看像的背面;(5)根據前面的結論在頭腦中想像。

七年級數學重要知識點

變形名稱具體做法注意事項

去分母在不等式兩邊同乘以分母的最小公倍數(1)不含分母的項不能漏乘

(2)注意 分數線 有括弧作用,去掉分母後,如分子是多項式,要加括弧

(3)不等式兩邊同乘以的數是個負數,不等號方向改變。

去括弧根據題意,由內而外或由外而內去括弧均可

(1)運用分配律去括弧時,不要漏乘括弧內的項

(2)如果括弧前是「—」號,去括弧時,括弧內的各項要變號

移項把含未知數的項都移到不等式的一邊(通常是左邊),不含未知數的項移到不等式的另一邊移項(過橋)變號

合並同類項把不等式兩邊的同類項分別合並,把不等式化為或的形式

合並同類項只是將同類項的系數相加,字母及字母的指數不變。

系數化1在不等式兩邊同除以未知數的系數,若且,則不等式的解集為;若且,則不等式的解集為;若且,則不等式的解集為;若且,則不等式的解集為;

(1)分子、分母不能顛倒

(2)不等號改不改變由系數的正負性決定。

(3)計算順序:先算數值後定符號

4、將一元一次不等式的解集在數軸上表示出來,是數學中數形結合思想的重要體現,要注意的是「三定」:一是定邊界點,二是定方向,三是定空實。

5、用一元一次不等式解答實際問題,關鍵在於尋找問題中的不等關系,從而列出不等式並求出不等式的解集,最後解決實際問題。

6、常見不等式的基本語言的意義:

(1),則x是正數;(2),則x是負數;

(3),則x是非正數;(4),則x是非負數;

(5),則x大於y;(6),則x小於y;

(7),則x不小於y;(8),則x不大於y;

(9)或,則x,y同號;(10)或,則x,y異號;

(11)x,y都是正數,若,則;若,則;

(12)x,y都是負數,若,則;若,則

初一下冊數學《三角形》知識點

一、目標與要求

1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。

2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。

3.懂得判斷三條線段可否構成一個三角形的 方法 ,並能運用它解決有關的問題。

4.三角形的內角和定理,能用平行線的性質推出這一定理。

5.能應用三角形內角和定理解決一些簡單的實際問題。

二、重點

三角形內角和定理;

對三角形有關概念的了解,能用符號語言表示三條形。

三、難點

三角形內角和定理的推理的過程;

在具體的圖形中不重復,且不遺漏地識別所有三角形;

用三角形三邊不等關系判定三條線段可否組成三角形。

四、知識框架

五、知識點、概念 總結

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

三角形的內角和是外角和的一半。

10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11.三角形外角的性質

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等於與它不相鄰的兩個內角和;

(3)三角形的一個外角大於與它不相鄰的任一內角;

(4)三角形的外角和是360°。

12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

19.公式與性質

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

20.多邊形外角和定理:

(1)n邊形外角和等於n·180°-(n-2)·180°=360°

(2)多邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等於n·180°

21.多邊形對角線的條數:

(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

(2)n邊形共有n(n-3)/2條對角線。


七年級數學下冊知識點華師大版相關 文章 :

★ 華師版初一數學知識點

★ 初一數學學習方法指導與學習方法總結

★ 初二數學華師大版知識點

★ 北師版初一數學上冊知識點

★ 華師大版七年級數學《解一元一次方程》教案

★ 初一學習方法指導與學習方法總結

★ 華師大版一年級數學知識點

★ 復習方法

★ 八年級下冊數學教案華師大範文3篇

❸ 初中七下數學復習提綱 華師版

平時有抄筆記么?
復習筆記就好了.
網上搜索也都搜索的到.
我自己是不會整理啦.
抱歉.
幫不上忙了。
只是來告訴一下.
數學是靠平時積累和習題的運用的.
考試前突擊其實沒什麼用哦..

❹ 七年級數學知識點總結

高效的學習,要學會給自己定定目標,這樣學習會有一個方向;然後要學會梳理自身學習情況,以課本為基礎,結合自己做的筆記、試卷、掌握的薄弱環節、存在的問題等,合理的分配時間,有針對性、具體的去一點一點的攻克、落實。本篇 文章 是我為您整理的《 七年級數學 知識點 總結 歸納》,供大家借鑒。

↓↓↓點擊獲取「七年級知識點」↓↓↓

★ 初一數學上冊知識點歸納 ★

★ 七年級下數學知識點總結 ★

★ 初一地理上冊知識點總結 ★

★ 初一下冊歷史知識點歸納 ★

七年級數學知識點總結1

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

七年級數學知識點總結2

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級數學知識點總結3

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的 方法 :

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。


七年級數學知識點總結相關文章:

★ 七年級數學知識點整理大全

★ 2017年中考初中數學知識點總結

★ 初中數學圓的知識點歸納

★ 初中部數學學習方法總結

★ 初一數學的知識點歸納

★ 初中數學分式知識點總結

★ 初一數學基礎知識點梳理

★ 七年級數學單元知識點

★ 初一數學知識點歸納與學習方法

★ 初一數學知識點歸納華師版

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();