1. 數學初三中關於圓的公式
1.圓的周長C=2πr=πd
2.圓的面積S=πr²
3.扇形弧長l=nπr/180
4.扇形面積S=nπr²/360=rl/2
5.圓錐側面積S=πrl
〖圓的定義〗
幾何說:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等於定長的點的集合叫做圓。
〖圓的相關量〗
圓周率:圓周長度與圓的直徑長度的比叫做圓周率,
值是3....,
通常用π表示,計算中常取3.14為它的近似值(但奧數常取3或3.1416)。
圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。
圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
〖圓和圓的相關量字母表示方法〗
圓—⊙ 半徑—r 弧—⌒ 直徑—d 扇形弧長/圓錐母線—l 周長—C 面積—S
〖圓和其他圖形的位置關系〗
圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。
直線與圓有3種位置關系:
無公共點為相離;
有兩個公共點為相交;
圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
以直線AB與圓O為例(設OP⊥AB於P,則PO是AB到圓心的距離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。
【圓的平面幾何性質和定理】
[編輯本段]一有關圓的基本性質與定理
⑴圓的確定:不在同一直線上的三個點確定一個圓。 圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的2條弧。
逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的2條弧。
⑵有關圓周角和圓心角的性質和定理 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那麼他們所對應的其餘各組量都分別相等。 一條弧所對的圓周角等於它所對的圓心角的一半。 直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
⑶有關外接圓和內切圓的性質和定理
①一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;
②內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。
③S三角=1/2*△三角形周長*內切圓半徑
④兩相切圓的連心線過切點(連心線:兩個圓心相連的線段)
〖有關切線的性質和定理〗
圓的切線垂直於過切點的半徑;經過半徑的一端,並且垂直於這條半徑的直線,是這個圓的切線。
切線判定定理:經過半徑外端並且垂直於這條半徑的直線是圓的切線。
切線的性質:
(1)經過切點垂直於這條半徑的直線是圓的切線。
(2)經過切點垂直於切線的直線必經過圓心。
(3)圓的切線垂直於經過切點的半徑。
切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角。
〖有關圓的計算公式〗
1.圓的周長C=2πr=πd
2.圓的面積S=πr^2;
3.扇形弧長l=nπr/180
4.扇形面積S=nπr^2;/360=rl/2
5.圓錐側面積S=πrl
【圓的解析幾何性質和定理】
[編輯本段]〖圓的解析幾何方程〗
圓的標准方程:在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標准方程是(x-a)^2+(y-b)^2=r^2。
圓的一般方程:把圓的標准方程展開,移項,合並同類項後,可得圓的一般方程是x^2+y^2+Dx+Ey+F=0。和標准方程對比,其實D=-2a,E=-2b,F=a^2+b^2。
圓的離心率e=0,在圓上任意一點的曲率半徑都是r。
〖圓與直線的位置關系判斷〗
平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等於0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關於x的一元二次方程f(x)=0。
利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行於y軸(或垂直於x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,並且規定x1<x2,那麼:當x=-C/A<x1或x=-C/A>x2時,直線與圓相離;當x1<x=-C/A<x2時,直線與圓相交;
半徑r,直徑d在直角坐標系中,圓的解析式為:(x-a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0 => (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F => 圓心坐標為(-D/2,-E/2) 其實不用這樣算 太麻煩了 只要保證X方Y方前系數都是1 就可以直接判斷出圓心坐標為(-D/2,-E/2) 這可以作為
2. 初中數學幾何知識點
1.過兩點有且只有一條直線
2.兩點之間線段最短
3.同角或等角的補角相等
4.同角或等角的餘角相等
5.過一點有且只有一條直線和已知直線垂直
3. 初二下期數學公式 一點點就行
22邊角邊公理(SAS)
有兩邊和它們的夾角對應相等的兩個三角形全等
23
角邊角公理(
ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24
推論(AAS)
有兩角和其中一角的對邊對應相等的兩個三角形全等
25
邊邊邊公理(SSS)
有三邊對應相等的兩個三角形全等
26
斜邊、直角邊公理(HL)
有斜邊和一條直角邊對應相等的兩個直角三角形全等
27
定理1
在角的平分線上的點到這個角的兩邊的距離相等
28
定理2
到一個角的兩邊的距離相同的點,在這個角的平分線上
29
角的平分線是到角的兩邊距離相等的所有點的集合
30
等腰三角形的性質定理
等腰三角形的兩個底角相等
(即等邊對等角)
31
推論1
等腰三角形頂角的平分線平分底邊並且垂直於底邊
32
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33
推論3
等邊三角形的各角都相等,並且每一個角都等於60°
34
等腰三角形的判定定理
如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35
推論1
三個角都相等的三角形是等邊三角形
36
推論
2
有一個角等於60°的等腰三角形是等邊三角形
37
在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38
直角三角形斜邊上的中線等於斜邊上的一半
39
定理
線段垂直平分線上的點和這條線段兩個端點的距離相等
40
逆定理
和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42
定理1
關於某條直線對稱的兩個圖形是全等形
43
定理
2
如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3
兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理
如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理
直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理
如果三角形的三邊長a、b、c有關系a^2+b^2=c^2
,那麼這個三角形是直角三角形
48定理
四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理
n邊形的內角的和等於(n-2)×180°
51推論
任意多邊的外角和等於360°
52平行四邊形性質定理1
平行四邊形的對角相等
53平行四邊形性質定理2
平行四邊形的對邊相等
54推論
夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3
平行四邊形的對角線互相平分
56平行四邊形判定定理1
兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2
兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3
對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4
一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1
矩形的四個角都是直角
61矩形性質定理2
矩形的對角線相等
62矩形判定定理1
有三個角是直角的四邊形是矩形
63矩形判定定理2
對角線相等的平行四邊形是矩形
64菱形性質定理1
菱形的四條邊都相等
65菱形性質定理2
菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1
四邊都相等的四邊形是菱形
68菱形判定定理2
對角線互相垂直的平行四邊形是菱形
69正方形性質定理1
正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1
關於中心對稱的兩個圖形是全等的
72定理2
關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理
如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理
等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理
在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理
如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79
推論1
經過梯形一腰的中點與底平行的直線,必平分另一腰
80
推論2
經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81
三角形中位線定理
三角形的中位線平行於第三邊,並且等於它
的一半
82
梯形中位線定理
梯形的中位線平行於兩底,並且等於兩底和的
一半
L=(a+b)÷2
S=L×h
83
(1)比例的基本性質
如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84
(2)合比性質
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85
(3)等比性質
如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86
平行線分線段成比例定理
三條平行線截兩條直線,所得的對應
線段成比例
87
推論
平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88
定理
如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89
平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90
定理
平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91
相似三角形判定定理1
兩角對應相等,兩三角形相似(ASA)
92
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93
判定定理2
兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94
判定定理3
三邊對應成比例,兩三角形相似(SSS)
95
定理
如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96
性質定理1
相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97
性質定理2
相似三角形周長的比等於相似比
98
性質定理3
相似三角形面積的比等於相似比的平方
99
任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理
不在同一直線上的三點確定一個圓。
110垂徑定理
垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2
圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論
在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理
一條弧所對的圓周角等於它所對的圓心角的一半
117推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3
如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理
圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交
d<r