⑴ 高考數學必考知識點歸納總結
面對即將到來的高考,還沒有確定學習計劃的同學們,以下是由我為大家整理的「高考數學必考知識點歸納總結 」,僅供參考,歡迎大家閱讀。
高中數學重要知識點歸納
1.必修課程由5個模塊組成:
必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)
必修2:立體幾何初步、平面解析幾何初步。
必修3:演算法初步、統計、概率。
必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。
必修5:解三角形、數列、不等式。
以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。
選修課程分為4個系列:
系列1:2個模塊
選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。
選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖
系列2: 3個模塊
選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2-2:導數及其應用、推理與證明、數系的擴充與復數
選隱敗修2-3:計數原理、隨機變數及其分布列、統計案例
選修4-1:幾何證明選講
選修4-4:坐標系與參數方程
選修4-5:不等式選講
2.高考數學必考重難點及其考點:
重點:函數,數列,三角函數衡祥,平面向量,圓錐曲線,立體幾何,導數
難點:函數,圓錐曲線
高考相關考點:
1. 集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件
2. 函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用
3. 數列:數列的有關概念、等差數列、等比數列、數列求通項、求和
4. 三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用
5. 平面向量:初等運算、坐標運算、數量積及其應用
6. 不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用
7. 直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系
8. 圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
9. 直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量
10. 排列、組合和概率:排列、組合應用題、二項式定理及其應用
11. 概率與統計:概率、分布列、期望、方差、抽樣、正態分布
12. 導數:導數的概念、求導、導數的應用
13. 復數:復數的概念與運算
高中數學易錯知識點整理
一.集合與函數
1.進行集合的交、並、補運算時,不要忘了全集和空集的特殊情況,不要忘記了藉助數軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什麼區別?四種命題之間的相互關系是什麼?如何判斷充分與必要條件?
5.你知道「否命題」與「命題的否定形式」的區別.
6.求解與函數有關的問題易忽略定義域優先的原則.
7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關於原點對稱.
8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.
9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.
10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值,作差,判正負)和導數法
11.求函數單調性時,易錯誤地在多個單調區間之間添加符號「∪」和「或」;單調區間不能用集合或不等式表示.
12.求函數的值域必須先求函數的定義域。
13.如何應用函數的灶攔顫單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恆成立問題).這幾種基本應用你掌握了嗎?
14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?
(真數大於零,底數大於零且不等於1)字母底數還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?
16.用換元法解題時易忽略換元前後的等價性,易忽略參數的范圍。
17.「實系數一元二次方程有實數解」轉化時,你是否注意到:當時,「方程有解」不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?
二.不等式
18.利用均值不等式求最值時,你是否注意到:「一正;二定;三等」.
19.絕對值不等式的解法及其幾何意義是什麼?
20.解分式不等式應注意什麼問題?用「根軸法」解整式(分式)不等式的注意事項是什麼?
21.解含參數不等式的通法是「定義域為前提,函數的單調性為基礎,分類討論是關鍵」,注意解完之後要寫上:「綜上,原不等式的解集是……」.
22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意「同號可倒」即a>b>0,a<0.
三.數列
24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25.在「已知,求」的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。
26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什麼樣的無窮等比數列的所有項的和必定存在?
27.數列單調性問題能否等同於對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)
28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。
四.三角函數
29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?
30.三角函數的定義及單位圓內的三角函數線(正弦線、餘弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數、餘切函數的定義域了嗎?你注意到正弦函數、餘弦函數的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反餘弦、反正切函數的取值范圍分別是
34.你還記得某些特殊角的三角函數值嗎?
35.掌握正弦函數、餘弦函數及正切函數的圖象和性質.你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?
36.函數的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數的圖象的平移為「左+右-,上+下-」;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為「左+右-,上-下+」;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等於2R.
五.平面向量
40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。
41.數量積與兩個實數乘積的區別:
在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出.
已知實數,且,則a=c,但在向量的數量積中沒有.
在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.
42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
六.解析幾何
43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
46.定比分點的坐標公式是什麼?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
47.對不重合的兩條直線
(建議在解題時,討論後利用斜率和截距)
48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。
49.解決線性規劃問題的基本步驟是什麼?請你注意解題格式和完整的文字表達.(①設出變數,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到並求出最優解⑦應用題一定要有答。)
50.三種圓錐曲線的定義、圖形、標准方程、幾何性質,橢圓與雙曲線中的兩個特徵三角形你掌握了嗎?
51.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?
52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前後項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?
53.通徑是拋物線的所有焦點弦中最短的弦.(想一想在雙曲線中的結論?)
54.在用圓錐曲線與直線聯立求解時,消元後得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制.(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).
55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?
七.立體幾何
56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
57.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什麼?
58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什麼嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見
59.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為」一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行」而導致證明過程跨步太大.
60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那麼就不要忘了還有一種求角的方法即用證明它們垂直的方法.
61.異面直線所成角利用「平移法」求解時,一定要注意平移後所得角等於所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。
62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?
63.兩條異面直線所成的角的范圍:0°<α≤90°
直線與平面所成的角的范圍:0o≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
64.你知道異面直線上兩點間的距離公式如何運用嗎?
65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前後有關幾何元素的「不變數」與「不變性」。
66.立幾問題的求解分為「作」,「證」,「算」三個環節,你是否只注重了「作」,「算」,而忽視了「證」這一重要環節?
67.稜柱及其性質、平行六面體與長方體及其性質.這些知識你掌握了嗎?(注意運用向量的方法解題)
68.球及其性質;經緯度定義易混.經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?
八.排列、組合和概率
69.解排列組合問題的依據是:分類相加,分步相乘,有序排列,無序組合.
解排列組合問題的規律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排後排法;至多至少問題間接法.
70.二項式系數與展開式某一項的系數易混,第r+1項的二項式系數為。二項式系數最大項與展開式中系數最大項易混.二項式系數最大項為中間一項或兩項;展開式中系數最大項的求法要用解不等式組來確定r.
71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發生的概率公式;③相互獨立事件同時發生的概率公式.)
72.二項式展開式的通項公式、n次獨立重復試驗中事件A發生k次的概率易記混。
通項公式:它是第r+1項而不是第r項;
事件A發生k次的概率:.其中k=0,1,2,3,…,n,且0
73.求分布列的解答題你能把步驟寫全嗎?
74.如何對總體分布進行估計?(用樣本估計總體,是研究統計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義.)
75.你還記得一般正態總體如何化為標准正態總體嗎?(對任一正態總體來說,取值小於x的概率,其中表示標准正態總體取值小於的概率)
以上都是高考數學必考知識點高中數學重點知識歸納具體內容,同學可以按照以上知識點和重點知識歸納去學習。
⑵ 高中數學知識點總結歸納
如果把數學比作一把鎖的話,那思考就是一把開鎖的金鑰匙,為你打開這數學之鎖。下面就是我為大家精心整理的高中數學知識點 總結 ,希望對你們有所幫助!
高中數學知識點總結歸納
1、含n個元素的有限集合其子集共有2n個,非空子集有2n—1個,非空真子集有2n—2個。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補等於補之並。
Cu(AUB)=(CuA)∩(CuB),並之補等於補之交。
3、ax2+bx+c<0的解集為x(0
+c>0的解集為x,cx2+bx+a>0的解集為>x或x<;ax2—bx+
4、c<0的解集為x,cx2—bx+a>0的解集為->x或x<-。
5、原命題與其逆否命題是等價命題。
原命題的逆命題與原命題的否命題也是等價命題。
6、函數是一種特殊的映射,函數與映射都可用:f:A→B表示。
A表示原像,B表示像。當f:A→B表示函數時,A表示定義域,B大於或等於其值域范圍。只有一一映射的函數才具有反函數。
7、原函數與反函數的單調性一致,且都為奇函數。
偶函數和周期函數沒有反函數。若f(x)與g(x)關於點(a,b)對稱,則g(x)=2b-f(2a-x).
8、若f(-x)=f(x),則f(x)為偶函數,若f(-x)=f(x),則f(x)為奇函數;
偶函數關於y軸對稱,且對稱軸兩邊的單調性相反;奇函數關於原點對稱,且在整個定義域上的單調性一致。反之亦然。若奇函數在x=0處有意義,則f(0)=0。函數的單調性可用定義法和導數法求出。偶函數的導函數是奇函數,奇函數的導函數是偶函數。對於任意常數T(T≠0),在定義域范圍內,都有f(x+T)=f(x),則稱f(x)是周期為T的周期函數,且f(x+kT)=f(x),k≠0.
9、周期函數的特徵性:①f(x+a)=-f(x),是T=2a的函數,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函數,③若f(x)既x=a關對稱,又關於x=b對稱,則f(x)是T=2(b-a)的函數④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b-a)的函數⑤f(x+a)=±,則f(x)
是T=4(b-a)的函數
10、復合函數的單調性滿足「同增異減」原理。
定義域都是指函數中自變數的取值范圍。
11、抽象函數主要有f(xy)=f(x)+f(y)(對數型),f(x+y)=f(x)?f(y)(指數型),f(x+y)=f(x)+f(y)(直線型)。
解此類抽象函數比較實用的 方法 是特殊值法和周期法。
12、指數函數圖像的規律是:底數按逆時針增大。
對數函數與之相反.
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。
在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數方程或不等式時,常藉助於換元法,應特別注意換元後新變元的取值范圍。
14、log10N=lgN;logeN=lnN(e=2.718???);對數的性質:如果a>0,a≠0,M>0N>0,
那麼loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.
換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.
15、函數圖像的變換:
(1)水平平移:y=f(x±a)(a>0)的圖像可由y=f(x)向左或向右平移a個單位得到;
(2)豎直平移:y=f(x)±b(b>0)圖像,可由y=f(x)向上或向下平移b個單位得到;
(3)對稱:若對於定義域內的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關於直線x=m對稱;y=f(x)關於(a,b)對稱的函數為y!=2b—f(2a—x).
(4) , 學習計劃 ;翻折:①y=|f(x)|是將y=f(x)位於x軸下方的部分以x軸為對稱軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位於y軸左方的圖像翻折到y軸的右方而成的圖像。
(5)有關結論:①若f(a+x)=f(b—x),在x為一切實數上成立,則y=f(x)的圖像關於
x=對稱。②函數y=f(a+x)與函數y=f(b—x)的圖像有關於直線x=對稱。
15、等差數列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,則am+an=ap+aq;
sk,s2k—k,s3k—2k成以k2d為公差的等差數列。an是等差數列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數列,則可設前n項和為sn=an2+bn(註:沒有常數項),用方程的思想求解a,b。在等差數列中,若將其腳碼成等差數列的項取出組成數列,則新的數列仍舊是等差數列。
17、等比數列中,an=a1?qn-1=am?qn-m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;
sk,s2k—k,s3k—2k也是等比數列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數列。在等比數列中,若將其腳碼成等差數列的項取出組成數列,則新的數列仍舊是等比數列。裂項公式:
=—,=?(—),常用數列遞推形式:疊加,疊乘,
18、弧長公式:l=|α|?r。
s扇=?lr=?|α|r2=?;當一個扇形的周長一定時(為L時),
其面積為,其圓心角為2弧度。
19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;
Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
高考數學必考知識點
1.【數列】&【解三角形】
數列與解三角形的知識點在解答題的第一題中,是非此即彼的狀態,近些年的特徵是大題第一題兩年數列兩年解三角形輪流來, 2014、2015年大題第一題考查的是數列,2016年大題第一題考查的是解三角形,故預計2017年大題第一題較大可能仍然考查解三角形。
數列主要考察數列的定義,等差數列、等比數列的性質,數列的通項公式及數列的求和。
解三角形在解答題中主要考查正、餘弦定理在解三角形中的應用。
2.【立體幾何】
高考在解答題的第二或第三題位置考查一道立體幾何題,主要考查空間線面平行、垂直的證明,求二面角等,出題比較穩定,第二問需合理建立空間直角坐標系,並正確計算。
3.【概率】
高考在解答題的第二或第三題位置考查一道概率題,主要考查古典概型,幾何概型,二項分布,超幾何分布,回歸分析與統計,近年來概率題每年考查的角度都不一樣,並且題干長,是學生感到困難的一題,需正確理解題意。
4.【解析幾何】
高考在第20題的位置考查一道解析幾何題。主要考查圓錐曲線的定義和性質,軌跡方程問題、含參問題、定點定值問題、取值范圍問題,通過點的坐標運算解決問題。
5.【導數】
高考在第21題的位置考查一道導數題。主要考查含參數的函數的切線、單調性、最值、零點、不等式證明等問題,並且含參問題一般較難,處於必做題的最後一題。
6.【選做題】
今年高考幾何證明選講已經刪除,選考題只剩兩道,一道是坐標系與參數方程問題,另一道是不等式選講問題。坐標系與參數方程題主要考查曲線的極坐標方程、參數方程、直線參數方程的幾何意義的應用以及范圍的最值問題;不等式選講題主要考查絕對值不等式的化簡,求參數的范圍及不等式的證明。
高中數學知識點總結
一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.
三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.
四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式』7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.
五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.
六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程.
八、圓錐曲線(18課時,7個)1橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質.
九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式』4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.
十一、概率(12課時,5個)1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗.選修Ⅱ(24個)
十二、概率與統計(14課時,6個)1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸.
十三、極限(12課時,6個)1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.
十四、導數(18課時,8個)1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的值和最小值.
十五、復數(4課時,4個)1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試捲成功與否的標准之一.這一傳統近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學數學比前人幸福啊!!相信對你的學習會有幫助的,祝你成功!答案補充一試全國高中數x的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積的點,重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積。在周長一定的簡單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學歸納法。遞歸,一階、二階遞歸,特徵方程法。函數迭代,求n次迭代,簡單的函數方程。n個變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡單的組合恆等式。一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。
高中數學知識點總結歸納最新相關 文章 :
★ 高中數學知識點全總結最全版
★ 高中數學知識點最新歸納
★ 高考數學知識點總結最新整理
★ 高中數學考點整理歸納
★ 高中數學知識點全總結
★ 高中數學學習方法:知識點總結最全版
★ 高中高一數學知識點總結
★ 高中數學全部知識點提綱整理
★ 最新高考數學知識點歸納總結
★ 高考數學知識點最新總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑶ 高二數學知識點歸納總結
想要知道高二數學學些什麼的小夥伴,趕緊來瞧瞧吧!下面由我為你精心准備了「高二數學知識點歸納總結?」,本文僅供參考,持續關注本站將可以持續獲取更多的資訊!
高二數學知識點歸納總結
一、集合、簡易邏輯
1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。
二、函數
1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。
三、數列
1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。
四、三角函數
1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。
五、平面向量
1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。
六、不等式
1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。
七、直線和圓的方程
1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。
八、圓錐曲線
1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其毀備標准方程;7.拋物線的簡單幾何性質。
九、直線、平面、簡單何體
1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項式定理
1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。
十一、概率
1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率枝余族;5.獨立重復試驗。
選修Ⅱ
十二、概率與統計
1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸。
十三、極限
1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。
十四、導數
1.導數的猛弊概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。
十五、復數
1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。
拓展閱讀:高中數學高效復習方法有哪些
一、課後及時回憶
如果等到把課堂內容遺忘得差不多時才復習,就幾乎等於重新學習,所以課堂學習的新知識必須及時復習。
可以一個人單獨回憶,也可以幾個人在一起互相啟發,補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節,循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
二、定期重復鞏固
即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長。可以當天鞏固新知識,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節進行知識歸納總結,必須把相關知識串聯在一起,形成知識網路,達到對知識和方法的整體把握。
三、科學合理安排
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優於集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,並且與其他的學習或娛樂或休息交替進行,不至於單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,並非間隔時間越長越好,而要適合自己的復習規律。
四、重點難點突破
對所學的素材要進行分析、歸類,找出重、難點,分清主次。在復習過程中,特別要關注難點及容易造成誤解的問題,應分析其關鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點「超市」,可隨時點擊,進行復習。
五、復習效果檢測
隨著時間的推移,復習的效果會產生變化,有的淡化、有的模糊、有的不準確,到底各環節的內容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關練習、期中考試、期末考試等,都是為了檢測學習效果。檢測時必須獨立,限時完成,保證檢測出的效果的真實性,如果存在問題,應該找到錯誤的根源,並適時採取補救措施進行校正。目前市場上練習冊多如牛毛,請在老師的指導下選用。
適合理科生的專業有哪些
一、計算機科學與技術
本專業培養從事計算機教學、科學研究和應用的計算機科學與技術學科的高級專門科學技術人才。
畢業後適合到科研部門、教育單位、企業、事業、技術和行政管理部門等單位及各系統、各行業的相關部門工作。
二、生物工程(生物科學)
本專業培養在生物技術與工程領域從事設計、生產、管理和新技術研究、新產品開發的工程技術人才。
畢業後可以在教學、科研部門,也可在農、林、漁、牧、副、醫、葯以及有關的企業與事業單位從事教學、科學研究或其他與生物學有關的技術工作。
三、生物技術
本專業培養生物技術及相關領域的理論及應用性研究,具有創新能力和實踐能力的高級專門技術人才。
畢業後主要到科研機構或高等學校從事科學研究或教學工作或在工業、醫葯、食品、農、林、牧、漁、環保、園林等行業的企業、事業和行政管理部門從事與生物技術有關的應用研究、技術開發、生產管理和行政管理等工作。
四、通信工程
本專業培養掌握光波、無線、多媒體通訊技術、通訊系統和通訊網等方面知識,在通信領域從事研究、設計、製造、運營及從事通訊技術開發與應用、管理與決策的高級工程技術人才。
畢業後到郵電部所屬各郵電管理局及公司從事科研、技術開發、經營及管理工作,也可到軍隊、鐵路、電力等部門從事相應的工作。
五、數學與應用數學
本專業是理工結合,培養具有寬厚的數學基礎,熟練的計算機應用和開發技能,較強的外語(課程)能力,並掌握一定的應用科學知識,運用數學的理論和方法解決實際問題的高級科技人才。
畢業後適合到科研、工程、經濟、金融、管理等部門和高等院校從事教學、計算機應用、軟體設計、信息管理、經濟動態分析和預測等多方面的研究和管理工作。
六、信息與計算科學
本專業培養從事研究、教學、應用軟體開發和管理工作等方面的高級專門人才。畢業後主要到科技、教育和經濟部門從事研究、教學和應用開發及管理工作。
七、應用物理學
本專業培養具有堅實的數理基礎,熟悉物理學基本理論和發展趨勢,熟悉計算機語言,掌握實驗物理基本技能和數據處理的方法,獲得技術開發以及工程技術方面的基本訓練,具有良好的科學素養和創新意識。
畢業後在應用物理、電子信息技術、材料科學與工程、計算機技術等相關科學領域從事應用研究、技術開發以及教學和管理工作。
八、應用化學
本專業以高分子材料、精細化工和計算機在化學化工中的應用技術為專業方向,培養從事相關領域的科學研究,工業開發和管理知識的高級專門人才。
畢業後主要到科研機構、高等學校及企事業單位等從事科學研究、教學及管理。
九、環境科學
本專業培養從事科研、教學、規劃與管理、環境評價和環境監測等工作的高級專業人才。
畢業後主要到科研機構、高等學校、企業事業單位及行政部門等從事科研、教學、環境保護和環境管理等工作。
十、環境工程專業
本專業培養城市和城鎮水、氣、聲、固體廢物等污染防治和給排水工程,水污染控制規劃和水資源保護等方面知識的環境工程學科高級工程技術人才。
畢業後主要到政府、規劃、經濟管理、環保部門和設計單位、工礦企業、科研單位、學校等從事規劃、設計、施工、管理、教育和研究開發方面的工作。
⑷ 楂樹腑鏁板︺傘
鏈夌殑瀛︾敓璁や負楂樹腑鏁板﹂毦鍋氶毦鍋氥傚叾瀹為珮涓鏁板︽暣浣撲笂寰堢畝鍗曪紝寰堢畝鍗曪紝寰堝氱煡璇嗗彧瑕佽諱袱閬嶅氨鍙浠ヤ簡銆備笅闈㈡槸鎴戞暣鐞嗙殑楂樹腑鏁板︾煡璇嗙偣澶у叏錛屽笇鏈涘逛綘浠鏈夋墍甯鍔! 楂樹腑鏁板︾煡璇嗙偣 1銆佸熀鏈鍒濈瓑鍑芥暟 鎸囨暟銆佸規暟銆佸籙鍑芥暟涓夊ぇ鍑芥暟鐨勮繍綆楁ц川鍙婂浘鍍 鍑芥暟鐨勫嚑澶ц佺礌鍜岀浉鍏寵冪偣鍩烘湰閮藉湪鍑芥暟鍥懼儚涓婃湁鎵浣撶幇錛屽崟璋冩с佸炲噺鎬с佹瀬鍊箋侀浂鐐圭瓑絳夈傚叧浜庤繖涓夊ぇ鍑芥暟鐨勮繍綆楀叕寮忥紝澶氳板氱敤錛屽氬仛涓鐐圭粌涔狅紝鍩烘湰灝辨病闂棰樸 鍑芥暟鍥懼儚鏄榪欎竴絝犵殑閲嶉毦鐐癸紝鑰屼笖鍥懼儚闂棰樻槸涓嶈兘闈犺板繂鐨勶紝蹇呴』瑕佺悊瑙o紝瑕佷細鐔熺粌鐨勭敾鍑哄嚱鏁板浘鍍忥紝瀹氫箟鍩熴佸煎煙銆侀浂鐐圭瓑絳夈傚逛簬騫傚嚱鏁拌繕瑕佹悶娓呮氬綋鎸囨暟騫傚ぇ浜庝竴鍜屽皬浜庝竴鏃跺浘鍍忕殑涓嶅悓鍙婂嚱鏁板肩殑澶у皬鍏崇郴錛岃繖涔熸槸甯歌冪偣銆傚彟澶栨寚鏁板嚱鏁板拰瀵規暟鍑芥暟鐨勫圭珛鍏崇郴鍙婂叾鐩鎬簰涔嬮棿瑕佹庢牱杞鍖栫瓑闂棰橈紝闇瑕佺潃閲嶅洖鐪嬭炬湰渚嬮樸 2銆佸嚱鏁扮殑搴旂敤 榪欎竴絝犱富瑕佽冩槸鍑芥暟涓庢柟紼嬬殑緇撳悎錛屽叾瀹炲氨鏄鍑芥暟鐨勯浂鐐癸紝涔熷氨鏄鍑芥暟鍥懼儚涓嶺杞寸殑浜ょ偣銆傝繖涓夎呬箣闂寸殑杞鍖栧叧緋繪槸榪欎竴絝犵殑閲嶇偣錛岃佸︿細鍦ㄨ繖涓夎呬箣闂寸伒媧昏漿鍖栵紝浠ユ眰鑳芥渶綆鍗曠殑瑙e喅闂棰樸傚叧浜庤瘉鏄庨浂鐐圭殑 鏂規硶 錛岀洿鎺ヨ$畻鍔犲緱蹇呮湁闆剁偣錛岃繛緇鍑芥暟鍦▁杞翠笂鏂逛笅鏂規湁瀹氫箟鍒欐湁闆剁偣絳夌瓑錛岃繖浜涢毦鐐瑰瑰簲鐨勮瘉鏄庢柟娉曢兘瑕佽頒綇錛屽氱粌涔犮備簩嬈″嚱鏁扮殑闆剁偣鐨勎斿垽鍒娉曪紝榪欎釜闇瑕佷綘鐪嬫噦瀹氫箟錛屽氱敾澶氬仛棰樸 3銆佺┖闂村嚑浣 涓夎嗗浘鍜岀洿瑙傚浘鐨勭粯鍒朵笉綆楅毦錛屼絾鏄浠庝笁瑙嗗浘澶嶅師鍑哄疄鐗╀粠鑰岃$畻灝遍渶瑕佹瘮杈冨己鐨勭┖闂存劅錛岃佽兘浠庝笁寮犲鉤闈㈠浘涓鎱㈡參鍦ㄨ剳嫻蜂腑鐢誨嚭瀹炵墿錛岃繖灝辮佹眰瀛︾敓鐗瑰埆鏄絀洪棿鎰熷急鐨勫︾敓澶氱湅涔︿笂鐨勪緥鍥撅紝鎶婂疄鐗╁浘鍜屽鉤闈㈠浘緇撳悎璧鋒潵鐪嬶紝鍏堢啛緇冨湴姝f帹錛屽啀鎱㈡參鐨勯嗘帹(寤鴻鐢ㄧ焊鍋氫竴涓絝嬫柟浣撴潵鎵炬劅瑙)銆 鍦ㄥ仛棰樻椂緇撳悎鑽夊浘鏄鏈夊繀瑕佺殑錛屼笉鑳藉崟鍑鎯寵薄銆傚悗闈㈢殑閿ヤ綋銆佹熅浣撱佸彴浣撶殑琛ㄩ潰縐鍜屼綋縐錛屾妸鍏寮忚扮墷闂棰樺氨涓嶅ぇ銆 4銆佺偣銆佺洿綰褲佸鉤闈涔嬮棿鐨勪綅緗鍏崇郴 榪欎竴絝犻櫎浜嗛潰涓庨潰鐨勭浉浜ゅ栵紝瀵圭┖闂存傚康鐨勮佹眰涓嶅己錛屽ぇ閮ㄥ垎閮藉彲浠ョ洿鎺ョ敾鍥撅紝榪欏氨瑕佹眰瀛︾敓澶氱湅鍥俱傝嚜宸辯敾鑽夊浘鐨勬椂鍊欒佷弗鏍兼敞鎰忓ソ瀹炵嚎鉶氱嚎錛岃繖鏄涓瑙勮寖鎬ч棶棰樸 鍏充簬榪欎竴絝犵殑鍐呭癸紝鐗㈣扮洿綰誇笌鐩寸嚎銆侀潰涓庨潰銆佺洿綰誇笌 闈㈢浉 浜ゃ佸瀭鐩淬佸鉤琛岀殑鍑犲ぇ瀹氱悊鍙婂嚑澶фц川錛屽悓鏃惰兘鐢ㄥ浘褰㈣璦銆佹枃瀛楄璦銆佹暟瀛﹁〃杈懼紡琛ㄧず鍑烘潵銆傚彧瑕佽繖浜涘叏閮ㄨ繃鍏寵繖涓絝犲氨瑙e喅浜嗕竴澶у崐銆傝繖涓絝犵殑闅劇偣鍦ㄤ簬浜岄潰瑙掕繖涓姒傚康錛屽ぇ澶氬悓瀛﹀嵆浣跨煡閬撴湁榪欎釜姒傚康錛屼篃鏃犳硶鐞嗚В鎬庝箞鍦ㄤ簩闈㈤噷闈㈠仛鍑鴻繖涓瑙掋傚硅繖縐嶆儏鍐靛彧鏈変粠瀹氫箟鍏ユ墜錛屽厛瑕佹妸瀹氫箟璁扮墷錛屽啀澶氬仛澶氱湅錛岃繖涓娌℃湁浠涔堟嵎寰勫彲璧般 5銆佸渾涓庢柟紼 鑳界啛緇冨湴鎶婁竴鑸寮忔柟紼嬭漿鍖栦負鏍囧噯鏂圭▼錛岄氬父鐨勮冭瘯褰㈠紡鏄絳夊紡鐨勪竴杈瑰惈鏍瑰彿錛屽彟涓杈逛笉鍚錛岃繖鏃跺氨瑕佹敞鎰忓紑鏂瑰悗瀹氫箟鍩熸垨鍊煎煙鐨勯檺鍒躲傞氳繃鐐瑰埌鐐圭殑璺濈匯佺偣鍒扮洿綰跨殑璺濈匯佸渾鍗婂緞鐨勫ぇ灝忓叧緋繪潵鍒ゆ柇鐐逛笌鍦嗐佺洿綰誇笌鍦嗐佸渾涓庡渾鐨勪綅緗鍏崇郴銆傚彟澶栨敞鎰忓渾鐨勫圭О鎬у紩璧風殑鐩稿垏銆佺浉浜ょ瓑鐨勫氱嶆儏鍐碉紝鑷宸辨妸鍑犵嶅圭О鐨勫艦寮忕綏鍒楀嚭鏉ワ紝澶氭濊冨氨涓嶉毦鐞嗚В浜嗐 6銆佷笁瑙掑嚱鏁 鑰冭瘯蹇呭湪榪欎竴鍧楀嚭棰橈紝涓旈橀噺涓嶅皬!璇卞煎叕寮忓拰鍩烘湰涓夎掑嚱鏁板浘鍍忕殑涓浜涙ц川錛屾病鏈夊お澶ч毦搴︼紝鍙瑕佷細鐢誨浘灝辮屻傞毦搴﹂兘鍦ㄤ笁瑙掑嚱鏁板艦鍑芥暟鐨勬尟騫呫侀戠巼銆佸懆鏈熴佺浉浣嶃佸垵鐩鎬笂錛屽強鏍規嵁鏈鍊艱$畻A銆丅鐨勫煎拰鍛ㄦ湡錛屽強鎮掔瓑鍙樺寲鏃剁殑鍥懼儚鍙婃ц川鍙樺寲錛岃繖閮ㄥ垎鐨勭煡璇嗙偣鍐呭硅緝澶氾紝闇瑕佸氳姳鏃墮棿錛屼笉瑕佸啀瀹氫箟涓婃繪墸錛岃佷粠鍥懼儚鍜屼緥棰樺叆鎵嬨 7銆佸鉤闈㈠悜閲 鍚戦噺鐨勮繍綆楁ц川鍙婁笁瑙掑艦娉曞垯銆佸鉤琛屽洓杈瑰艦娉曞垯鐨勯毦搴﹂兘涓嶅ぇ錛屽彧瑕佸湪璁$畻鐨勬椂鍊欒頒綇瑕佲滃悓璧風偣鐨勫悜閲忊濊繖涓鏉″氨OK浜嗐傚悜閲忓叡綰垮拰鍨傜洿鐨勬暟瀛﹁〃杈撅紝鏄璁$畻褰撲腑緇忓父鐢ㄥ埌鐨勫叕寮忋傚悜閲忕殑鍏辯嚎瀹氱悊銆佸熀鏈瀹氱悊銆佹暟閲忕Н鍏寮忋傚垎鐐瑰潗鏍囧叕寮忔槸閲嶇偣鍐呭癸紝涔熸槸闅劇偣鍐呭癸紝瑕佽姳蹇冩濊板繂銆 8銆佷笁瑙掓亽絳夊彉鎹 榪欎竴絝犲叕寮忕壒鍒澶氾紝鍍忓樊鍊嶅崐瑙掑叕寮忚繖綾誨唴瀹瑰父浼氬嚭鐜幫紝鎵浠ュ繀欏昏佽扮墷銆傜敱浜庨噺姣旇緝澶э紝璁板繂闅懼害澶э紝鎵浠ュ緩璁鐢ㄧ焊鍐欏ソ鍚庤創鍦ㄦ屽瓙涓婏紝澶╁ぉ閮借佺湅銆傝佹彁涓鐐癸紝灝辨槸涓夎掓亽絳夊彉鎹㈡槸鏈変竴瀹氳勫緥鐨勶紝璁板繂鐨勬椂鍊欏彲浠ラ泦鍚堜笁瑙掑嚱鏁板幓璁般 9銆佽В涓夎掑艦 鎺屾彙姝e雞銆佷綑寮﹀叕寮忓強鍏跺彉寮忋佹帹璁恆佷笁瑙掗潰縐鍏寮忓嵆鍙銆 10銆佹暟鍒 絳夊樊銆佺瓑姣旀暟鍒楃殑閫氶」鍏寮忋佸墠n欏瑰強涓浜涙ц川甯稿嚭鐜頒簬濉絀恆佽В絳旈樹腑錛岃繖閮ㄥ垎鍐呭瑰﹁搗鏉ユ瘮杈冪畝鍗曪紝浣嗚冮獙瀵瑰叾鎺ㄥ箋佽$畻銆佹椿鐢ㄧ殑灞傞潰杈冩繁錛屽洜姝よ佷粩緇嗐傝冭瘯棰樹腑錛岄氶」鍏寮忋佸墠n欏瑰拰鐨勫唴瀹瑰嚭鐜伴戞¤緝澶氾紝榪欑被棰樼湅鍒板悗瑕佸甫鏈夌洰鐨勭殑鍘繪帹瀵煎氨娌¢棶棰樹簡銆 11銆佷笉絳夊紡 榪欎竴絝犱竴鑸鐢ㄧ嚎鎬ц勫垝鐨勫艦寮忔潵鑰冨療瀛︾敓錛岃繖縐嶉橀氬父鏄鍜屽疄闄呴棶棰樿仈緋葷殑錛屾墍浠ヨ佷細璇婚橈紝浠庨樹腑鎵句笉絳夊紡錛岀敾鍑虹嚎鎬ц勫垝鍥撅紝鐒跺悗鍐嶆牴鎹瀹為檯闂棰樼殑闄愬埗瑕佹眰鏉ユ眰鏈鍊箋
楂樹腑鏁板﹀叕寮忓ぇ鍏 涔樻硶涓庡洜寮忓垎 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 涓夎掍笉絳夊紡 |a+b|鈮|a|+|b| |a-b|鈮|a|+|b| |a|鈮b<=>-b鈮a鈮b |a-b|鈮|a|-|b| -|a|鈮a鈮|a| 涓鍏冧簩嬈℃柟紼嬬殑瑙 -b+鈭(b2-4ac)/2a -b-鈭(b2-4ac)/2a 鏍逛笌緋繪暟鐨勫叧緋 X1+X2=-b/a X1_X2=c/a 娉錛氶煢杈懼畾鐞 鍒ゅ埆寮 b2-4ac=0 娉錛氭柟紼嬫湁涓や釜鐩哥瓑鐨勫疄鏍 b2-4ac>0 娉錛氭柟紼嬫湁涓や釜涓嶇瓑鐨勫疄鏍 b2-4ac<0 娉錛氭柟紼嬫病鏈夊疄鏍癸紝鏈夊叡杞澶嶆暟鏍 涓夎掑嚱鏁板叕寮 涓よ掑拰鍏寮 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 鍊嶈掑叕寮 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 鍗婅掑叕寮 sin(A/2)=鈭((1-cosA)/2) sin(A/2)=-鈭((1-cosA)/2) cos(A/2)=鈭((1+cosA)/2) cos(A/2)=-鈭((1+cosA)/2) tan(A/2)=鈭((1-cosA)/((1+cosA)) tan(A/2)=-鈭((1-cosA)/((1+cosA)) ctg(A/2)=鈭((1+cosA)/((1-cosA)) ctg(A/2)=-鈭((1+cosA)/((1-cosA)) 鍜屽樊鍖栫Н 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 鏌愪簺鏁板垪鍓峮欏瑰拰 1+2+3+4+5+6+7+8+9+鈥+n=n(n+1)/2 1+3+5+7+9+11+13+15+鈥+(2n-1)=n2 2+4+6+8+10+12+14+鈥+(2n)=n(n+1) 12+22+32+42+52+62+72+82+鈥+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+鈥n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+鈥+n(n+1)=n(n+1)(n+2)/3 姝e雞瀹氱悊 a/sinA=b/sinB=c/sinC=2R 娉錛 鍏朵腑 R 琛ㄧず涓夎掑艦鐨勫栨帴鍦嗗崐寰 浣欏雞瀹氱悊 b2=a2+c2-2accosB 娉錛氳払鏄杈筧鍜岃竟c鐨勫す瑙 鍦嗙殑鏍囧噯鏂圭▼ (x-a)2+(y-b)2=r2 娉錛(a,b)鏄鍦嗗績鍧愭爣 鍦嗙殑涓鑸鏂圭▼ x2+y2+Dx+Ey+F=0 娉錛欴2+E2-4F>0 鎶涚墿綰挎爣鍑嗘柟紼 y2=2px y2=-2px x2=2py x2=-2py 鐩存1鏌變晶闈㈢Н S=c_h 鏂滄1鏌變晶闈㈢Н S=c'_h 姝f1閿ヤ晶闈㈢Н S=1/2c_h' 姝f1鍙頒晶闈㈢Н S=1/2(c+c')h' 鍦嗗彴渚ч潰縐 S=1/2(c+c')l=pi(R+r)l 鐞冪殑琛ㄩ潰縐 S=4pi_r2 鍦嗘熅渚ч潰縐 S=c_h=2pi_h 鍦嗛敟渚ч潰縐 S=1/2_c_l=pi_r_l 寮ч暱鍏寮 l=a_r a鏄鍦嗗績瑙掔殑寮у害鏁皉 >0 鎵囧艦闈㈢Н鍏寮 s=1/2_l_r 閿ヤ綋浣撶Н鍏寮 V=1/3_S_H 鍦嗛敟浣撲綋縐鍏寮 V=1/3_pi_r2h 鏂滄1鏌變綋縐 V=S'L 娉錛氬叾涓,S'鏄鐩存埅闈㈤潰縐錛 L鏄渚ф1闀 鏌變綋浣撶Н鍏寮 V=s_h 鍦嗘熅浣 V=pi_r2h 楂樿冨墠鏁板︾煡璇嗙偣 鎬葷粨 閫夋嫨濉絀洪 1銆佹槗閿欑偣褰掔撼錛 涔濆ぇ妯″潡鏄撴販娣嗛毦璁板繂鑰冪偣鍒嗘瀽錛屽傛傜巼鍜岄戠巼姒傚康娣鋒穯銆佹暟鍒楁眰鍜屽叕寮忚板繂閿欒絳夛紝寮哄寲鍩虹鐭ヨ瘑鐐硅板繂錛岄伩寮鍥犱負鐭ヨ瘑鐐瑰け璇閫犳垚鐨勫㈣傛цВ棰橀敊璇銆 閽堝瑰¢樸佽В棰樻濊礬涓嶄弗璋ㄥ傞泦鍚堥樺瀷鏈鑰冭檻絀洪泦鎯呭喌銆佸嚱鏁伴棶棰樻湭鑰冭檻瀹氫箟鍩熺瓑涓昏傛у洜緔犻犳垚鐨勫け璇榪涜屼笓欏硅緇冦 2銆佺瓟棰樻柟娉曪細 閫夋嫨棰樺嶮澶ч熻В鏂規硶錛 鎺掗櫎娉曘佸炲姞鏉′歡娉曘佷互灝忚佸ぇ娉曘佹瀬闄愭硶銆佸叧閿鐐規硶銆佸圭О娉曘佸皬緇撹烘硶銆佸綊綰蟲硶銆佹劅瑙夋硶銆佸垎鏋愰夐」娉; 濉絀洪樺洓澶ч熻В鏂規硶錛氱洿鎺ユ硶銆佺壒孌婂寲娉曘佹暟褰㈢粨鍚堟硶銆佺瓑浠瘋漿鍖栨硶銆 瑙g瓟棰 涓撻樹竴銆佷笁瑙掑彉鎹涓庝笁瑙掑嚱鏁扮殑鎬ц川闂棰 1銆佽В棰樿礬綰垮浘 鈶犱笉鍚岃掑寲鍚岃 鈶¢檷騫傛墿瑙 鈶㈠寲f(x)=Asin(蠅x+蠁)+h 鈶g粨鍚堟ц川奼傝В銆 2銆佹瀯寤虹瓟棰樻ā鏉 鈶犲寲綆錛氫笁瑙掑嚱鏁板紡鐨勫寲綆錛屼竴鑸鍖栨垚y=Asin(蠅x+蠁)+h鐨勫艦寮忥紝鍗沖寲涓衡滀竴瑙掋佷竴嬈°佷竴鍑芥暟鈥濈殑褰㈠紡銆 鈶℃暣浣撲唬鎹錛氬皢蠅x+蠁鐪嬩綔涓涓鏁翠綋錛屽埄鐢▂=sin x錛寉=cos x鐨勬ц川紜瀹氭潯浠躲 鈶㈡眰瑙o細鍒╃敤蠅x+蠁鐨勮寖鍥存眰鏉′歡瑙e緱鍑芥暟y=Asin(蠅x+蠁)+h鐨勬ц川錛屽啓鍑虹粨鏋溿 鈶 鍙嶆 錛氬弽鎬濆洖欏撅紝鏌ョ湅鍏抽敭鐐癸紝鏄撻敊鐐癸紝瀵圭粨鏋滆繘琛屼及綆楋紝媯鏌ヨ勮寖鎬с 涓撻樹簩銆佽В涓夎掑艦闂棰 1銆佽В棰樿礬綰垮浘 (1) 鈶犲寲綆鍙樺艦;鈶$敤浣欏雞瀹氱悊杞鍖栦負杈圭殑鍏崇郴;鈶㈠彉褰㈣瘉鏄庛 (2) 鈶犵敤浣欏雞瀹氱悊琛ㄧず瑙;鈶$敤鍩烘湰涓嶇瓑寮忔眰鑼冨洿;鈶㈢『瀹氳掔殑鍙栧艱寖鍥淬 2銆佹瀯寤虹瓟棰樻ā鏉 鈶犲畾鏉′歡錛氬嵆紜瀹氫笁瑙掑艦涓鐨勫凡鐭ュ拰鎵奼傦紝鍦ㄥ浘褰涓鏍囨敞鍑烘潵錛岀劧鍚庣『瀹氳漿鍖栫殑鏂瑰悜銆 鈶″畾宸ュ叿錛氬嵆鏍規嵁鏉′歡鍜屾墍奼傦紝鍚堢悊閫夋嫨杞鍖栫殑宸ュ叿錛屽疄鏂借竟瑙掍箣闂寸殑浜掑寲銆 鈶㈡眰緇撴灉銆 鈶e啀鍙嶆濓細鍦ㄥ疄鏂借竟瑙掍簰鍖栫殑鏃跺欏簲娉ㄦ剰杞鍖栫殑鏂瑰悜錛屼竴鑸鏈変袱縐嶆濊礬錛氫竴鏄鍏ㄩ儴杞鍖栦負杈逛箣闂寸殑鍏崇郴;浜屾槸鍏ㄩ儴杞鍖栦負瑙掍箣闂寸殑鍏崇郴錛岀劧鍚庤繘琛屾亽絳夊彉褰銆 涓撻樹笁銆佹暟鍒楃殑閫氶」銆佹眰鍜岄棶棰 1銆佽В棰樿礬綰垮浘 鈶犲厛奼傛煇涓欏癸紝鎴栬呮壘鍒版暟鍒楃殑鍏崇郴寮忋 鈶℃眰閫氶」鍏寮忋 鈶㈡眰鏁板垪鍜岄氬紡銆 2銆佹瀯寤虹瓟棰樻ā鏉 鈶犳壘閫掓帹錛氭牴鎹宸茬煡鏉′歡紜瀹氭暟鍒楃浉閭諱袱欏逛箣闂寸殑鍏崇郴錛屽嵆鎵炬暟鍒楃殑閫掓帹鍏寮忋 鈶℃眰閫氶」錛氭牴鎹鏁板垪閫掓帹鍏寮忚漿鍖栦負絳夊樊鎴栫瓑姣旀暟鍒楁眰閫氶」鍏寮忥紝鎴栧埄鐢ㄧ瘡鍔犳硶鎴栫瘡涔樻硶奼傞氶」鍏寮忋 鈶㈠畾鏂規硶錛氭牴鎹鏁板垪琛ㄨ揪寮忕殑緇撴瀯鐗瑰緛紜瀹氭眰鍜屾柟娉(濡傚叕寮忔硶銆佽傞」鐩告秷娉曘侀敊浣嶇浉鍑忔硶銆佸垎緇勬硶絳)銆 鈶e啓姝ラわ細瑙勮寖鍐欏嚭奼傚拰姝ラゃ 鈶ゅ啀鍙嶆濓細鍙嶆濆洖欏撅紝鏌ョ湅鍏抽敭鐐廣佹槗閿欑偣鍙婅В棰樿勮寖銆 涓撻樺洓銆佸埄鐢ㄧ┖闂村悜閲忔眰瑙掗棶棰 1銆佽В棰樿礬綰垮浘 鈶犲緩絝嬪潗鏍囩郴錛屽苟鐢ㄥ潗鏍囨潵琛ㄧず鍚戦噺銆 鈶$┖闂村悜閲忕殑鍧愭爣榪愮畻銆 鈶㈢敤鍚戦噺宸ュ叿奼傜┖闂寸殑瑙掑拰璺濈匯 2銆佹瀯寤虹瓟棰樻ā鏉 鈶犳壘鍨傜洿錛氭壘鍑(鎴栦綔鍑)鍏鋒湁鍏鍏變氦鐐圭殑涓夋潯涓や袱鍨傜洿鐨勭洿綰褲 鈶″啓鍧愭爣錛氬緩絝嬬┖闂寸洿瑙掑潗鏍囩郴錛屽啓鍑虹壒寰佺偣鍧愭爣銆 鈶㈡眰鍚戦噺錛氭眰鐩寸嚎鐨勬柟鍚戝悜閲忔垨騫抽潰鐨'娉曞悜閲忋 鈶f眰澶硅掞細璁$畻鍚戦噺鐨勫す瑙掋 鈶ゅ緱緇撹猴細寰楀埌鎵奼備袱涓騫抽潰鎵鎴愮殑瑙掓垨鐩寸嚎鍜屽鉤闈㈡墍鎴愮殑瑙掋 涓撻樹簲銆佸渾閿ユ洸綰誇腑鐨勮寖鍥撮棶棰 1銆佽В棰樿礬綰垮浘 鈶犺炬柟紼嬨 鈶¤В緋繪暟銆 鈶㈠緱緇撹恆 2銆佹瀯寤虹瓟棰樻ā鏉 鈶犳彁鍏崇郴錛氫粠棰樿炬潯浠朵腑鎻愬彇涓嶇瓑鍏崇郴寮忋 鈶℃壘鍑芥暟錛氱敤涓涓鍙橀噺琛ㄧず鐩鏍囧彉閲忥紝浠e叆涓嶇瓑鍏崇郴寮忋 鈶㈠緱鑼冨洿錛氶氳繃奼傝В鍚鐩鏍囧彉閲忕殑涓嶇瓑寮忥紝寰楁墍奼傚弬鏁扮殑鑼冨洿銆 鈶e啀鍥為【錛氭敞鎰忕洰鏍囧彉閲忕殑鑼冨洿鎵鍙楅樹腑鍏朵粬鍥犵礌鐨勫埗綰︺ 涓撻樺叚銆佽В鏋愬嚑浣曚腑鐨勬帰緔㈡ч棶棰 1銆佽В棰樿礬綰垮浘 鈶犱竴鑸鍏堝亣璁捐繖縐嶆儏鍐墊垚絝(鐐瑰瓨鍦ㄣ佺洿綰垮瓨鍦ㄣ佷綅緗鍏崇郴瀛樺湪絳) 鈶″皢涓婇潰鐨勫亣璁句唬鍏ュ凡鐭ユ潯浠舵眰瑙c 鈶㈠緱鍑虹粨璁恆 2銆佹瀯寤虹瓟棰樻ā鏉 鈶犲厛鍋囧畾錛氬亣璁劇粨璁烘垚絝嬨 鈶″啀鎺ㄧ悊錛氫互鍋囪劇粨璁烘垚絝嬩負鏉′歡錛岃繘琛屾帹鐞嗘眰瑙c 鈶涓嬬粨璁猴細鑻ユ帹鍑哄悎鐞嗙粨鏋滐紝 緇忛獙 璇佹垚絝嬪垯鑲銆 瀹氬亣璁;鑻ユ帹鍑虹煕鐩懼垯鍚﹀畾鍋囪俱 鈶e啀鍥為【錛氭煡鐪嬪叧閿鐐癸紝鏄撻敊鐐(鐗規畩鎯呭喌銆侀殣鍚鏉′歡絳)錛屽¤嗚В棰樿勮寖鎬с 涓撻樹竷銆佺繪暎鍨嬮殢鏈哄彉閲忕殑鍧囧間笌鏂瑰樊 1銆佽В棰樿礬綰垮浘 (1)鈶犳爣璁頒簨浠;鈶″逛簨浠跺垎瑙;鈶㈣$畻姒傜巼銆 (2)鈶犵『瀹毼懼彇鍊;鈶¤$畻姒傜巼;鈶㈠緱鍒嗗竷鍒;鈶f眰鏁板︽湡鏈涖 2銆佹瀯寤虹瓟棰樻ā鏉 鈶犲畾鍏冿細鏍規嵁宸茬煡鏉′歡紜瀹氱繪暎鍨嬮殢鏈哄彉閲忕殑鍙栧箋 鈶″畾鎬э細鏄庣『姣忎釜闅忔満鍙橀噺鍙栧兼墍瀵瑰簲鐨勪簨浠躲 鈶㈠畾鍨嬶細紜瀹氫簨浠剁殑姒傜巼妯″瀷鍜岃$畻鍏寮忋 鈶h$畻錛氳$畻闅忔満鍙橀噺鍙栨瘡涓涓鍊肩殑姒傜巼銆 鈶ゅ垪琛錛氬垪鍑哄垎甯冨垪銆 鈶ユ眰瑙o細鏍規嵁鍧囧箋佹柟宸鍏寮忔眰瑙e叾鍊箋 涓撻樺叓銆佸嚱鏁扮殑鍗曡皟鎬с佹瀬鍊箋佹渶鍊奸棶棰 1銆佽В棰樿礬綰垮浘 (1)鈶犲厛瀵瑰嚱鏁版眰瀵;鈶¤$畻鍑烘煇涓鐐圭殑鏂滅巼;鈶㈠緱鍑哄垏綰挎柟紼嬨 (2)鈶犲厛瀵瑰嚱鏁版眰瀵;鈶¤皥璁哄兼暟鐨勬h礋鎬;鈶㈠垪琛ㄨ傚療鍘熷嚱鏁板;鈶e緱鍒板師鍑芥暟鐨勫崟璋冨尯闂村拰鏋佸箋 2銆佹瀯寤虹瓟棰樻ā鏉 鈶犳眰瀵兼暟錛氭眰f(x)鐨勫兼暟f鈥(x)銆(娉ㄦ剰f(x)鐨勫畾涔夊煙) 鈶¤В鏂圭▼錛氳Вf鈥(x)=0錛屽緱鏂圭▼鐨勬牴 鈶㈠垪琛ㄦ牸錛氬埄鐢╢鈥(x)=0鐨勬牴灝唂(x)瀹氫箟鍩熷垎鎴愯嫢騫蹭釜灝忓紑鍖洪棿錛屽苟鍒楀嚭琛ㄦ牸銆 鈶e緱緇撹猴細浠庤〃鏍艱傚療f(x)鐨勫崟璋冩с佹瀬鍊箋佹渶鍊肩瓑銆 鈶ゅ啀鍥為【錛氬歸渶璁ㄨ烘牴鐨勫ぇ灝忛棶棰樿佺壒孌婃敞鎰忥紝鍙﹀栬傚療f(x)鐨勯棿鏂鐐瑰強姝ラよ勮寖鎬с 浠ヤ笂妯℃澘浠呬緵鍙傝冿紝甯屾湜澶у惰兘閽堝硅嚜宸辯殑鎯呭喌鏁寸悊鍑烘潵鏈閫傚悎鐨勨滃楄礬鈥濄 楂樹腑鏁板 瀛︿範蹇冨緱 鏁板︽槸涓浠鍩虹瀛︾戱紝鎴戜滑浠庡皬灝卞紑濮嬫帴瑙﹀埌瀹冦傜幇鍦ㄦ垜浠宸茬粡姝ュ叆楂樹腑錛岀敱浜庨珮涓鏁板﹀圭煡璇嗙殑闅懼害銆佹繁搴︺佸箍搴﹁佹眰鏇撮珮錛屾湁涓閮ㄥ垎鍚屽︾敱浜庝笉閫傚簲榪欑嶅彉鍖栵紝鏁板︽垚緇╂繪槸涓嶅備漢鎰忋傜敋鑷充駭鐢熻繖鏍風殑鍥版儜錛氣滄垜鍦ㄥ垵涓鏃舵暟瀛︽垚緇╁緢濂斤紝鍙鐜板湪鎬庝箞浜?鈥濆叾瀹烇紝瀛︿範鏄涓涓涓嶆柇鎺ユ敹鏂扮煡璇嗙殑榪囩▼銆傛f槸鐢變簬浣犲湪榪涘叆楂樹腑鍚 瀛︿範鏂規硶 鎴 瀛︿範鎬佸害 鐨勫獎鍝嶏紝鎵嶄細閫犳垚瀛﹀緱緔姝昏屾垚緇╀笉濂界殑鍚庢灉銆傞偅涔堬紝絀剁珶璇ュ備綍瀛﹀ソ楂樹腑鏁板﹀憿?浠ヤ笅鎴戣皥璋堟垜鐨勯珮涓鏁板﹀︿範蹇冨緱銆 涓銆 璁ゆ竻瀛︿範鐨勮兘鍔涚姸鎬併 1銆 蹇冪悊緔犺川銆傛垜浠鍦ㄩ珮涓瀛︿範鐜澧冧笅鍙栧喅浜庢垜浠鏄鍚﹀叿鏈夐潰瀵規尗鎶樸佸喎闈欏垎鏋愰棶棰樼殑鍔炴硶銆傚綋鎴戜滑闈㈠瑰洶闅炬椂涓嶅簲浜х敓鐣忔儳鎰燂紝闈㈠瑰け璐ユ椂涓嶅簲鐏板績涓ф皵錛岃岃佸媷浜庢h嗚嚜宸憋紝鍙婃椂浣滃嚭鎬葷粨鏁欒錛屾敼鍙樺︿範鏂規硶銆 2銆 瀛︿範鏂瑰紡銆佷範鎯鐨勫弽鎬濅笌璁よ瘑銆(1) 瀛︿範鐨勪富鍔ㄦс傛垜浠鍦ㄨ繘鍏ラ珮涓浠ュ悗錛屼笉鑳借繕鍍忓垵涓鏃墮偅鏍鋒湁寰堝己鐨勪緷璧栧績鐞嗭紝涓嶈 瀛︿範璁″垝 錛屽潗絳変笂璇撅紝璇懼墠涓嶉勪範錛屼笂璇懼繖浜庤扮瑪璁拌屽拷鐣ヤ簡鐪熸g殑鍚璇撅紝欏炬ゅけ褰礆紝琚鍔ㄥ︿範銆(2) 瀛︿範鐨勬潯鐞嗘с傛垜浠鍦ㄦ瘡瀛︿範涓璇懼唴瀹規椂錛岃佸︿細灝嗙煡璇嗘湁鏉$悊鍦板垎涓鴻嫢騫茬被錛屽墫鏋愭傚康鐨勫唴娑靛栧歡錛岄噸鐐歸毦鐐硅佺獊鍑恆備笉瑕佸繖浜庤扮瑪璁幫紝鑰屽硅佺偣娌℃湁鍚娓呮氭垨鍚涓嶅叏銆傜瑪璁拌頒簡涓澶ф憺錛岄棶棰樹篃鏈変竴澶у爢銆傚傛灉榪樹笉鑳藉強鏃跺琺鍥恆佹葷粨錛岃屽繖浜庡楃潃棰樺瀷璧朵綔涓氾紝瀵規傚康銆佸畾鐞嗐佸叕寮忎笉鑳界悊瑙h屾昏扮‖鑳岋紝鍒欎細浜嬪嶅姛鍗婏紝鏀舵晥鐢氬井銆(3) 蹇借嗗熀紜銆傚湪鎴戣韓杈癸紝甯告湁浜涒滆嚜鎴戞劅瑙夎壇濂解濈殑鍚屽︼紝蹇借嗗熀紜鐭ヨ瘑銆佸熀鏈鎶鑳藉拰鍩烘湰鏂規硶錛屼笉鑳界墷鐗㈠湴鎶撲綇璇炬湰錛岃屾槸鍋忛噸浜庡歸毦棰樼殑鏀昏В錛屽ソ楂橀獩榪滐紝閲嶁滈噺鈥濊岃交鈥滆川鈥濓紝闄峰叆棰樻搗錛屽線寰鍦ㄨ冭瘯涓涓嶆槸婕旂畻閿欒灝辨槸涓閫斺滃崱澹斥濄(4) 涓嶈壇涔犳儻銆備富瑕佹湁瀵圭瓟妗堬紝鍗烽潰涔﹀啓涓嶅伐鏁達紝鏍煎紡涓嶈勮寖錛屼笉鐩鎬俊鑷宸辯殑緇撹猴紝緙轟箯瀵歸棶棰樿В鍐崇殑淇″績鍜屽喅蹇冿紝閬囧埌闂棰樹笉鑳界嫭絝嬫濊冿紝鍏繪垚涓縐嶄緷璧栦簬鑰佸笀瑙h寸殑蹇冪悊錛屽仛浣滀笟涓嶈茬┒鏁堢巼錛屽︿範鏁堢巼涓嶉珮銆 浜屻 鍔鍔涙彁楂樿嚜宸辯殑瀛︿範鑳藉姏銆 1銆 鎶撹佺偣鎻愰珮瀛︿範鏁堢巼銆(1) 鎶撴暀鏉愬勭悊銆傛f墍璋撯滀竾鍙樹笉紱誨叾涓鈥濄傝佺煡閬擄紝鏁欐潗濮嬬粓鏄鎴戜滑瀛︿範鐨勬牴鏈渚濇嵁銆傛暀瀛︽槸媧葷殑錛屾濈淮涔熸槸媧葷殑錛屽︿範鑳藉姏鏄闅忕潃鐭ヨ瘑鐨勭Н緔鑰屽悓鏃跺艦鎴愮殑銆傛垜浠瑕侀氳繃鑰佸笀鏁欏︼紝鐞嗚В鎵瀛﹀唴瀹瑰湪鏁欐潗涓鐨勫湴浣嶏紝騫跺皢鍓嶅悗鐭ヨ瘑鑱旂郴璧鋒潵錛屾妸鎻℃暀鏉愶紝鎵嶈兘鎺屾彙瀛︿範鐨勪富鍔ㄦс(2) 鎶撻棶棰樻毚闇層傚逛簬閭d簺鍏稿瀷鐨勯棶棰橈紝蹇呴』鍙婃椂瑙e喅錛岃屼笉鑳芥妸闂棰橀仐鐣欎笅鏉ワ紝鑰岃佸歸仐鐣欑殑闂棰樺強鏃躲佹湁鏁堢殑瑙e喅銆(3) 鎶 鎬濈淮璁緇 銆傛暟瀛︾殑鐗圭偣鏄鍏鋒湁楂樺害鐨勬娊璞℃с侀昏緫鎬у拰騫挎硾鐨勯傜敤鎬э紝瀵硅兘鍔涜佹眰杈冮珮銆傛垜浠鍦ㄥ鉤鏃剁殑璁緇冧腑錛岃佹敞閲嶄竴涓鎬濈淮鐨勮繃紼嬶紝瀛︿範鑳藉姏鏄鍦ㄤ笉鏂榪愮敤涓鎵嶈兘鍩瑰吇鍑烘潵鐨勩(5) 鎶45鍒嗛挓璇懼爞鏁堢巼銆傛垜浠瀛︿範鐨勫ぇ閮ㄥ垎鏃墮棿閮藉湪瀛︽牎錛屽傛灉涓嶈兘寰堝ソ鍦版姄浣忚懼爞鏃墮棿錛岃屽瘎甯屾湜浜庤懼栧幓琛ワ紝鍒欎細浣垮︿範鏁堢巼澶ф墦鎶樻墸銆 楂樹腑鏁板︾煡璇嗙偣澶у叏鐩稿叧 鏂囩珷 錛 鈽 楂樹簩鏁板︾煡璇嗙偣鎬葷粨 鈽 楂樹竴鏁板﹀繀淇涓鐭ヨ瘑鐐規眹鎬 鈽 楂樹腑鏁板﹀︿範鏂規硶:鐭ヨ瘑鐐規葷粨鏈鍏ㄧ増 鈽 楂樹腑鏁板︾煡璇嗙偣鎬葷粨 鈽 楂樹竴鏁板︾煡璇嗙偣鎬葷粨褰掔撼 鈽 楂樹笁鏁板︾煡璇嗙偣鑰冪偣鎬葷粨澶у叏 鈽 楂樹腑鏁板﹀熀紜鐭ヨ瘑澶у叏 鈽 楂樹笁鏁板︾煡璇嗙偣姊崇悊奼囨 鈽 楂樹腑鏁板﹀繀鑰冪煡璇嗙偣褰掔撼鏁寸悊 鈽 楂樹竴鏁板︾煡璇嗙偣鎬葷粨鏈熸湯蹇呭 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
⑸ 數學高中知識
一、《集合與函數》內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數
正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
二、《三角函數》
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,
變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,
餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用
1加餘弦想餘弦,1 減餘弦想正弦,冪升一次角減半,升冪降次它為范
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集
三、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
四、《數列》
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。
五、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
六、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。
七、《立體幾何》
點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。
高中《立體幾何》
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
編輯本段數學 必修1
1. 集合
(約4課時)
(1)集合的含義與表示
高中數學(15張)
①通過實例,了解集合的含義,體會元素與集合的「屬於」關系。
②能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
(2)集合間的基本關系
①理解集合之間包含與相等的含義,能識別給定集合的子集。
②在具體情境中,了解全集與空集的含義。
(3)集合的基本運算
①理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。
②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
③能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。 2. 函數概念與基本初等函數
(約32課時)
(1)函數
①進一步體會函數是描述變數之間的依賴關系的重要數學模型,在此基礎上學慣用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。
②在實際情境中,會根據不同的需要選擇恰當的方法(如圖象法、列表法、解析法)表示函數。
③了解簡單的分段函數,並能簡單應用。
④通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。
⑤學會運用函數圖象理解和研究函數的性質(參見例1)。
(2)指數函數
①(細胞的分裂,考古中所用的C的衰減,葯物在人體內殘留量的變化等),了解指數函數模型的實際背景。
②理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。
③理解指數函數的概念和意義,能藉助計算器或計算機畫出具體指數函數的圖象,探索並理解指數函數的單調性與特殊點。
④在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型(參見例2)。
(3)對數函數
①理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的產生歷史以及對簡化運算的作用。
②通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能藉助計算器或計算機畫出具體對數函數的圖象,探索並了解對數函數的單調性與特殊點。
③知道指數函數 與對數函數 互為反函數(a>0,a≠1)。
(4)冪函數
通過實例,了解冪函數的概念;結合函數 的圖象,了解它們的變化情況。
(5)函數與方程
①結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。
②根據具體函數的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。
(6)函數模型及其應用
①利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。
②收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。
(7)實習作業
根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,採取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。具體要求參見數學文化的要求。
編輯本段數學 必修21. 立體幾何初步
(約18課時)
(1)空間幾何體
①利用實物模型、計算機軟體觀察大量空間圖形,認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構。
②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)製作模型,會用斜二側法畫出它們的直觀圖。
③通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。
④完成實習作業,如畫出某些建築的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、線條等不作嚴格要求)。
⑤了解球、稜柱、棱錐、台的表面積和體積的計算公式(不要求記憶公式)。
(2)點、線、面之間的位置關系
①藉助長方體模型,在直觀認識和理解空間點、線、面的位置關系的基礎上,抽象出空間線、面位置關系的定義,並了解如下可以作為推理依據的公理和定理。
◆公理1:如果一條直線上的兩點在一個平面內,那麼這條直線在此平面內。
◆公理2:過不在一條直線上的三點,有且只有一個平面。
◆公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。
◆公理4:平行於同一條直線的兩條直線平行。
◆定理:空間中如果兩個角的兩條邊分別對應平行,那麼這兩個角相等或互補。
②以立體幾何的上述定義、公理和定理為出發點,通過直觀感知、操作確認、思辨論證,認識和理解空間中線面平行、垂直的有關性質與判定。
操作確認,歸納出以下判定定理。
◆平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。
◆一個平面內的兩條相交直線與另一個平面平行,則這兩個平面平行。
◆一條直線與一個平面內的兩條相交直線垂直,則該直線與此平面垂直。
◆一個平面過另一個平面的垂線,則兩個平面垂直。
操作確認,歸納出以下性質定理,並加以證明。
◆一條直線與一個平面平行,則過該直線的任一個平面與此平面的交線與該直線平行。
◆兩個平面平行,則任意一個平面與這兩個平面相交所得的交線相互平行。
◆垂直於同一個平面的兩條直線平行。
◆兩個平面垂直,則一個平面內垂直於交線的直線與另一個平面垂直。
③能運用已獲得的結論證明一些空間位置關系的簡單命題。
2. 平面解析幾何初步
(約18課時)
(1)直線與方程
①在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。
②理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。
③能根據斜率判定兩條直線平行或垂直。
④根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。
⑤能用解方程組的方法求兩直線的交點坐標。
⑥探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
①回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。
②能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。
③能用直線和圓的方程解決一些簡單的問題。
(3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。
(4)空間直角坐標系
①通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。
②通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。
編輯本段數學 必修31. 演算法初步
(約12課時)
(1)演算法的含義、程序框圖
①通過對解決具體問題過程與步驟的分析(如二元一次方程組求解等問題),體會演算法的思想,了解演算法的含義。
②通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中(如三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環。
(2)基本演算法語句:經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本演算法語句——輸入語句、輸出語句、賦值語句、條件語句、循環語句,進一步體會演算法的基本思想。
(3)通過閱讀中國古代數學中的演算法案例,體會中國古代數學對世界數學發展的貢獻。
2. 統計
(約16課時)
(1)隨機抽樣
①能從現實生活或其他學科中提出具有一定價值的統計問題。
②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性。
③在參與解決統計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統抽樣方法。
④能通過試驗、查閱資料、設計調查問卷等方法收集數據。
(2)用樣本估計總體
①通過實例體會分布的意義和作用,在表示樣本數據的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會它們各自的特點。
②通過實例理解樣本數據標准差的意義和作用,學會計算數據標准差。
③能根據實際問題的需求合理地選取樣本,從樣本數據中提取基本的數字特徵(如平均數、標准差),並作出合理的解釋。
④在解決統計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數字特徵估計總體的基本數字特徵;初步體會樣本頻率分布和數字特徵的隨機性。
⑤會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數據的分析為合理的決策提供一些依據,認識統計的作用,體會統計思維與確定性思維的差異。
⑥形成對數據處理過程進行初步評價的意識。
(3)變數的相關性
①通過收集現實問題中兩個有關聯變數的數據作出散點圖,並利用散點圖直觀認識變數間的相關關系。
②經歷用不同估算方法描述兩個變數線性相關的過程。知道最小二乘法的思想,能根據給出的線性回歸方程系數公式建立線性回歸方程(參見例2)。
3. 概率
(約8課時)
(1)在具體情境中,了解隨機事件發生的不確定性和頻率的穩定性,進一步了解概率的意義以及頻率與概率的區別。
(2)通過實例,了解兩個互斥事件的概率加法公式。
(3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。
(4)了解隨機數的意義,能運用模擬方法(包括計算器產生隨機數來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。
(5)通過閱讀材料,了解人類認識隨機現象的過程。
編輯本段數學 必修41. 三角函數
(約16課時)
(1)任意角、弧度
了解任意角的概念和弧度制,能進行弧度與角度的互化。
(2)三角函數
①藉助單位圓理解任意角三角函數(正弦、餘弦、正切)的定義。
②藉助單位圓中的三角函數線推導出誘導公式( 的正弦、餘弦、正切),能畫出 的圖象,了解三角函數的周期性。
③藉助圖象理解正弦函數、餘弦函數在 ,正切函數在 上的性質(如單調性、最大和最小值、圖象與x軸交點等)。
④理解同角三角函數的基本關系式:
⑤結合具體實例,了解 的實際意義;能藉助計算器或計算機畫出 的圖象,觀察參數A,ω, 對函數圖象變化的影響。
⑥會用三角函數解決一些簡單實際問題,體會三角函數是描述周期變化現象的重要函數模型。
2. 平面向量
(約12課時)
(1)平面向量的實際背景及基本概念
通過力和力的分析等實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。
(2)向量的線性運算
①掌握向量加、減法的運算,並理解其幾何意義。
②掌握向量數乘的運算,並理解其幾何意義,以及兩個向量共線的含義。
③了解向量的線性運算性質及其幾何意義。
(3)平面向量的基本定理及坐標表示
①了解平面向量的基本定理及其意義。
②掌握平面向量的正交分解及其坐標表示。
③會用坐標表示平面向量的加、減與數乘運算。
④理解用坐標表示的平面向量共線的條件。
(4)平面向量的數量積
①通過物理中「功」等實例,理解平面向量數量積的含義及其物理意義。
②體會平面向量的數量積與向量投影的關系。
③掌握數量積的坐標表達式,會進行平面向量數量積的運算。
④能運用數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。
(5)向量的應用
經歷用向量方法解決某些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,發展運算能力和解決實際問題的能力。
3. 三角恆等變換
(約8課時)
(1)經歷用向量的數量積推導出兩角差的餘弦公式的過程,進一步體會向量方法的作用。
(2)能從兩角差的餘弦公式導出兩角和與差的正弦、餘弦、正切公式,二倍角的正弦、餘弦、正切公式,了解它們的內在聯系。
(3)能運用上述公式進行簡單的恆等變換(包括引導導出積化和差、和差化積、半形公式,但不要求記憶)。
編輯本段數學 必修51. 解三角形
(約8課時)
(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、餘弦定理,並能解決一些簡單的三角形度量問題。
(2)能夠運用正弦定理、餘弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題。
2. 數列
(約12課時)
(1)數列的概念和簡單表示法
了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式),了解數列是一種特殊函數。
(2)等差數列、等比數列
①理解等差數列、等比數列的概念。
②探索並掌握等差數列、等比數列的通項公式與前n項和的公式。
③能在具體的問題情境中,發現數列的等差關系或等比關系,並能用有關知識解決相應的問題(參見例1)。
④體會等差數列、等比數列與一次函數、指數函數的關系。
3. 不等式
(約16課時)
(1)不等關系
感受在現實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。
(2)一元二次不等式
①經歷從實際情境中抽象出一元二次不等式模型的過程。
②通過函數圖象了解一元二次不等式與相應函數、方程的聯系。
③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。
(3)二元一次不等式組與簡單線性規劃問題
①從實際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組(參見例2)。
③從實際情境中抽象出一些簡單的二元線性規劃問題,並能加以解決(參見例3)。
(4)基本不等式: 。
①探索並了解基本不等式的證明過程。
②會用基本不等式解決簡單的最大(小)值問題(參見例4)。
函數的性質 指數和對數
(1)定義域、值域、對應法則
(2)單調性
對於任意x1,x2∈D
若x1<x2 f(x1)<f(x2),稱f(x)在D上是增函數
若x1<x2 f(x1)>f(x2),稱f(x)在D上是減函數
(3)奇偶性
對於函數f(x)的定義域內的任一x,若f(-x)=f(x),稱f(x)是偶函數
若f(-x)=-f(x),稱f(x)是奇函數
(4)周期性
對於函數f(x)的定義域內的任一x,若存在常數T,使得f(x+T)=f(x),則稱f(x)是周期函數(1)分數指數冪
數學 選修