A. 初中數學中考復習知識點
一、相似三角形(7個考點)
考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3:相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。
考點4:相似三角形的判定和性質及其應用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。
二、銳角三角比(2個考點)
考點5:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。
考點6:解直角三角形及其應用
(1)理解解直角三角形的意義;
(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
三、二次函數(4個考點)
考點7:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數
(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;
(2)知道常值函數;
(3)知道函數的表示方法,知道符號的意義。
考點8:用待定系數法求二次函數的解析式
(1)掌握求函數解析式的方法;
(2)在求函數解析式中熟練運用待定系數法。
注意求函數解析式的步驟:一設、二代、三列、四還原。
考點9:畫二次函數的圖像
(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像
(2)理解二次函數的圖像,體會數形結合思想;
(3)會畫二次函數的大致圖像。
考點10:二次函數的圖像及其基本性質
(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;
(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。
注意:
(1)解題時要數形結合;
(2)二次函數的平移要化成頂點式。
四、圓的相關概念(6個考點)
考點11:圓心角、弦、弦心距的概念
考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。
考點12:圓心角、弧、弦、弦心距之間的關系
考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。
考點13:垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點14:直線與圓、圓與圓的位置關系及其相應的數量關系
直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。
考點15:正多邊形的有關概念和基本性質
考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。
五、數據整理和概率統計(9個考點)
考點16:確定事件和隨機事件
(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;
(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點17:事件發生的可能性大小,事件的概率
(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;
(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;
(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。
(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;
(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。
考點18:等可能試驗中事件的概率問題及概率計算
考核要求
(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;
(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;
(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。
(1)計算前要先確定是否為可能事件;
(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點19:數據整理與統計圖表
(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;
(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。
考點20:統計的含義
(1)知道統計的意義和一般研究過程;
(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。
考點21:平均數、加權平均數的概念和計算
(1)理解平均數、加權平均數的概念;
(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。
考點22:中位數、眾數、方差、標准差的概念和計算
(1)知道中位數、眾數、方差、標准差的概念;
(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。
(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;
(2)求中位數之前必須先將數據排序。
考點23:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖
(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;
(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.
考點24:中位數、眾數、方差、標准差、頻數、頻率的應用
(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;
(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;
(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。
B. 初中數學中考難題
第二十六章 二次函數
【課標要求】
考點 課標要求 知識與技能目標
了解 理解 掌握 靈活應用
二次函數 理解二次函數的意義 ∨
會用描點法畫出二次函數的圖像 ∨
會確定拋物線開口方向、頂點坐標和對稱軸 ∨
通過對實際問題的分析確定二次函數表達式 ∨ ∨
理解二次函數與一元二次方程的關系 ∨
會根據拋物線y=ax2+bx+c (a≠0)的圖像來確定a、b、c的符號 ∨ ∨
【知識梳理】
1.定義:一般地,如果 是常數, ,那麼 叫做 的二次函數.
2.二次函數 用配方法可化成: 的形式,其中 .
3.拋物線的三要素:開口方向、對稱軸、頂點.
① 的符號決定拋物線的開口方向:當 時,開口向上;當 時,開口向下;
相等,拋物線的開口大小、形狀相同.
②平行於 軸(或重合)的直線記作 .特別地, 軸記作直線 .
4.頂點決定拋物線的位置.幾個不同的二次函數,如果二次項系數 相同,那麼拋物線的開口方向、開口大小完全相同,只是頂點的位置不同.
5.求拋物線的頂點、對稱軸的方法
(1)公式法: ,∴頂點是 ,對稱軸是直線 .
(2)配方法:運用配方的方法,將拋物線的解析式化為 的形式,得到頂點為( , ),對稱軸是直線 .
(3)運用拋物線的對稱性:由於拋物線是以對稱軸為軸的軸對稱圖形,所以對稱軸的連線的垂直平分線是拋物線的對稱軸,對稱軸與拋物線的交點是頂點.用配方法求得的頂點,再用公式法或對稱性進行驗證,才能做到萬無一失.
6.拋物線 中, 的作用
(1) 決定開口方向及開口大小,這與 中的 完全一樣.
(2) 和 共同決定拋物線對稱軸的位置.由於拋物線 的對稱軸是直線
,故:① 時,對稱軸為 軸;② (即 、 同號)時,對稱軸在 軸左側;③ (即 、 異號)時,對稱軸在 軸右側.
(3) 的大小決定拋物線 與 軸交點的位置.
當 時, ,∴拋物線 與 軸有且只有一個交點(0, ):
① ,拋物線經過原點; ② ,與 軸交於正半軸;③ ,與 軸交於負半軸.
以上三點中,當結論和條件互換時,仍成立.如拋物線的對稱軸在 軸右側,則 .
7.用待定系數法求二次函數的解析式
(1)一般式: .已知圖像上三點或三對 、 的值,通常選擇一般式.
(2)頂點式: .已知圖像的頂點或對稱軸,通常選擇頂點式.
(3)交點式:已知圖像與 軸的交點坐標 、 ,通常選用交點式: .
12.直線與拋物線的交點
(1) 軸與拋物線 得交點為(0, ).
(2)與 軸平行的直線 與拋物線 有且只有一個交點( , ).
(3)拋物線與 軸的交點
二次函數 的圖像與 軸的兩個交點的橫坐標 、 ,是對應一元二次方程 的兩個實數根.拋物線與 軸的交點情況可以由對應的一元二次方程的根的判別式判定:
①有兩個交點 拋物線與 軸相交;
②有一個交點(頂點在 軸上) 拋物線與 軸相切;
③沒有交點 拋物線與 軸相離.
(4)平行於 軸的直線與拋物線的交點
同(3)一樣可能有0個交點、1個交點、2個交點.當有2個交點時,兩交點的縱坐標相等,設縱坐標為 ,則橫坐標是 的兩個實數根.
(5)一次函數 的圖像 與二次函數 的圖像 的交點,由方程組 的解的數目來確定:①方程組有兩組不同的解時 與 有兩個交點; ②方程組只有一組解時 與 只有一個交點;③方程組無解時 與 沒有交點.
(6)拋物線與 軸兩交點之間的距離:若拋物線 與 軸兩交點為 ,由於 、 是方程 的兩個根,故
【能力訓練】
1.二次函數y=-x2+6x-5,當 時, ,且 隨 的增大而減小。
2.拋物線 的頂點坐標在第三象限,則 的值為( )
A. B. C. D. .
3.拋物線y=x2-2x+3的對稱軸是直線( )
A.x =2 B.x =-2 C.x =-1 D.x =1
4. 二次函數y=x2+2x-7的函數值是8,那麼對應的x的值是( )
A.3 B.5 C.-3和5 D.3和-5
5.拋物線y=x2-x的頂點坐標是( )
6.二次函數 的圖象,如圖1-2-40所示,根據圖象可得a、b、c與0的大小關系是( )
A.a>0,b<0,c<0 B.a>0,b>0,c>0
C.a<0,b<0,c<0 D.a<0,b>0,c<0
7.小敏在今年的校運動會跳遠比賽中跳出了滿意一跳,函數h=3.5 t-4.9 t2(t的單位s;h中的單位:m)可以描述他跳躍時
重心高度的變化.如圖,則他起跳後到重心最高時所用的時間是( )
A.0.71s B.0.70s C.0.63s D.0.36s
8.已知拋物線的解析式為y=-(x—2)2+l,則拋物線的頂點坐標是( )
A.(-2,1)B.(2,l)C.(2,-1)D.(1,2)
9.若二次函數y=x2-x與y=-x2+k的圖象的頂點重合,則下列結論不正確的是( )
A.這兩個函數圖象有相同的對稱軸
B.這兩個函數圖象的開口方向相反
C.方程-x2+k=0沒有實數根
D.二次函數y=-x2+k的最大值為12
10.拋物線y=x2 +2x-3與x軸的交點的個數有( )
A.0個 B.1個 C.2個 D.3個
11.拋物線y=(x—l)2 +2的對稱軸是( )
A.直線x=-1 B.直線x=1 C.直線x=2 D.直線x=2
12.已知二次函數 的圖象如圖所示,則在「① a<0,②b >0,③c< 0,④b2-4ac>0」中,正確的判斷是( )
A、①②③④ B、④ C、①②③ D、①④
13.已知二次函數 (a≠0)的圖象如圖所示,則下列結論:①a、b同號;②當x=1和x=3時,函數值相等;③4a+b=0;④當y=-2時,x的值只能取0.其中正確的個數是( )
A.l個 B.2個 C.3個 D.4個
14.如圖,拋物線的頂點P的坐標是(1,-3),則此拋物線對應的二次函數有()
A.最大值1 B.最小值-3
C.最大值-3 D.最小值1
15.用列表法畫二次函數 的圖象時先列一個表,當表中對自變數x的值以相等間隔的值增加時,函數y所對應的值依次為:20,56,110,182,274,380,506,650.其中有一個值不正確,這個不正確的值是( )
A.506 B.380 C.274 D.182
16.將二次函數y=x2-4x+ 6化為 y=(x—h)2+k的形式:y=___________
17.把二次函數y=x2-4x+5化成y=(x—h)2+k的形式:y=___________
18.若二次函數y=x2-4x+c的圖象與x軸沒有交點,其中c為整數,則c=__
_________________(只要求寫一個).
19.拋物線y=(x-1)2+3的頂點坐標是____________.
20.二次函數y=x2-2x-3與x軸兩交點之間的距離為_________.
21. 已知拋物線y=ax2+bx+c經過A(-1,0)、B(3,0)、C(0,3)三點,
(1)求拋物線的解析式和頂點M的坐標,並在給定的直角坐標系中畫出這條拋物線。
(2)若點(x0,y0)在拋物線上,且0≤x0≤4,試寫出y0的取值范圍。
22.華聯商場以每件30元購進一種商品,試銷中發現每天的銷售量 (件)與每件的銷售價 (元)滿足一次函數y=162-3x;
(1)寫出商場每天的銷售利潤 (元)與每件的銷售價 (元)的函數關系式;
(2)如果商場要想獲得最大利潤,每件商品的銷售價定為多少為最合適?最大銷售利潤為多少?
23.某公司推出了一種高效環保型洗滌用品,年初上市後,公司經歷了從虧損到盈利的過程.下面的二次函數圖像(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關系(即前t個月的利潤總和s與t之間的關系).
根據圖像提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時間t(月)之間的函數關系式;
(2)求截止到幾月末公司累積利潤可達到30萬元;
(3)求第8個月公司所獲利潤是多少萬元?
24.如圖,有一座拋物線型拱橋,在正常水位時水面AB的寬是20米,如果水位上升3米時,水面CD的寬為10米,
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現有一輛載有救援物質的貨車從甲地出發,要經過此橋開往乙地,已知甲地到此橋 千米,(橋長忽略不計)貨車以每小時40千米的速度開往乙地,當行駛到1小時時,忽然接到緊急通知,前方連降大雨,造成水位以每小時 米的速度持續上漲,(貨車接到通知時水位在CD處),當水位達到橋拱最高點O時,禁止車輛通行;試問:汽車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度應超過多少千米?
25.已知直線y=-2x+b(b≠0)與x軸交於點A,與y軸交於點B;一拋物線的解析式為y=x2-(b+10)x+c.
⑴若該拋物線過點B,且它的頂點P在直線y=-2x+b上,試確定這條拋物線的解析式;
⑵過點B作直線BC⊥AB交x軸於點C,若拋物線的對稱軸恰好過C點,試確定直線y=-2x+b的解析式.
26.已知拋物線y=(1-m)x2+4x-3開口向下,與x軸交於A(x1,0)和B(x2,0)兩點,其中xl<x2.
(1)求m的取值范圍;
(2)若x12+ x22=10,求拋物線的解析式,並在給出的直角坐標系中畫出這條拋物線;
27.如圖,等腰梯形ABCD的邊BC在x軸上,點A在y軸的正方向上,A( 0, 6 ),D ( 4,6),且AB=210 .
(1)求點B的坐標;
(2)求經過A、B、D三點的拋物線的解析式;
(3)在(2)中所求的拋物線上是否存在一點P,使得S△PBD=12 S梯形ABCD。若存在,請求出該點坐標,若不存在,請說明理由.
28.數學活動小組接受學校的一項任務:在緊靠圍牆的空地上,利用圍牆及一段長為60米的木柵欄圍成一塊生物園地,請設計一個方案使生物園的面積盡可能大。
(1)活動小組提交如圖的方案。設靠牆的一邊長為 x 米,則不靠牆的一邊長為(60-2x)米,面積y= (60-2x) x米2.當x=15時,y最大值 =450米2。
(2)機靈的小明想:如果改變生物園的形狀,圍成的面積會更大嗎?請你幫小明設計兩個方案,要求畫出圖形,算出面積大小;並找出面積最大的方案.
答案:
1.>5 2. D 21. (1) (1,4) (2) –5≤y0≤4
22. (1) W= –3x2+252x–4860 (2) W最大=432(元)
23. (1) S= 12 t2–2t (t >0) (2) 當S=30時,t=10 (3) 當T=8時,S=16
24. (1) y= –125 x2
(2) 水位約4小時上漲到0,按原速不能安全通過此橋.若要通過需超過60千米/小時
25. (1) y=x2–4x–6 或 y=x2–10
(2) y= –2x–2 (提示,Rt△ABC中,OB2=OA•OC
26. (1) 1<m< 73 (2) y= –x2+4x–3
27 (1) B(–2, 0) (2) y= –12 x2+2x+6
(3) 由拋物線的對稱性可知拋物線必過點C,因此,P點必定在直線BD下方,
P1 (1+21 ,21 –3) P2(1–21 ,–21 –3)
28.以圍牆的一部分為一邊,往外圍成一個正多邊形(五、六、……)R的一半,
如圖S=12 ×103 ×(20+10×2+20)=3003 ≈520米2
圍成半圓面積最大,最大的面積為:573米2
C. 初中數學證明技巧
要掌握初中數學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。
下面歸類一下,多做練習,熟能生巧,遇到幾何證明題能想到採用哪一類型原理來解決問題。
一、證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
*9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
*10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
*12.兩圓的內(外)公切線的長相等。
13.等於同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的餘角(或補角)相等。
*6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。
*7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
*9.圓的內接四邊形的外角等於內對角。
10.等於同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。
2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補角的平分線互相垂直。
5.一條直線垂直於平行線中的一條,則必垂直於另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
*10.在圓中平分弦(或弧)的直徑垂直於弦。
*11.利用半圓上的圓周角是直角。
四、證明兩直線平行
1.垂直於同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行於第三邊。
5.梯形的中位線平行於兩底。
6.平行於同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等於短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
六、證明 角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等於和它不相鄰的兩個內角的和。
七、證明線段不等
1.同一三角形中,大角對大邊。
2.垂線段最短。
3.三角形兩邊之和大於第三邊,兩邊之差小於第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
*5.同圓或等圓中,弧大弦大,弦心距小。
6.全量大於它的任何一部分。
八、證明兩角的不等
1.同一三角形中,大邊對大角。
2.三角形的外角大於和它不相鄰的任一內角。
3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
*4.同圓或等圓中,弧大則圓周角、圓心角大。
5.全量大於它的任何一部分。
九、證明比例式或等積式
1.利用相似三角形對應線段成比例。
2.利用內外角平分線定理。
3.平行線截線段成比例。
4.直角三角形中的比例中項定理即射影定理。
*5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。
6.利用比利式或等積式化得。
十、證明四點共圓
*1.對角互補的四邊形的頂點共圓。
*2.外角等於內對角的四邊形內接於圓。
*3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。
*4.同斜邊的直角三角形的頂點共圓。
*5.到頂點距離相等的各點共圓
希望對你有所幫助,祝您學習進步!