當前位置:首頁 » 基礎知識 » 從數學原理出發講解知識點
擴展閱讀
什麼是人格與規范教育 2024-11-15 17:45:58
綜合知識初中英語考什麼 2024-11-15 17:31:38

從數學原理出發講解知識點

發布時間: 2024-11-15 15:16:22

『壹』 怎樣掌握初中數學最短路徑問題的知識點

最短路徑問題

兩點的所有連線中,線段最短

連接直線外一點與直線上各點的所有線段中,垂線段最短」等的問題,我們稱它們為最短路徑問題.


  • 兩點的所有連線中,線段最短

如圖所示,在河a兩岸有A、B兩個村莊,現在要在河上修建一座大橋,為方便交通,要使橋到這兩村莊的距離之和最短,應在河上哪一點修建才能滿足要求?(畫出圖形,做出說明)


『貳』 小學的數學知識點總結歸納

1、數與代數:數的認識、數的運算、式與方程、比和比例。

2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。

3、統計與可能性:量的計量、統計、可能性。

4、實踐與綜合應用:探索規律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。

(2)從數學原理出發講解知識點擴展閱讀:

整數

1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。

2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。

3、計數單位

一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。

每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

4、數位

計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。

5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。

如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。

因為35能被7整除,所以35是7的倍數,7是35的約數。

7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3

比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。

10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

解比例的依據是比例的基本性質。

11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y

12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y

百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。

把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

15、要學會把小數化成分數和把分數化成小數的化法。

16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)

17、互質數:公因數只有1的兩個數,叫做互質數。

18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公因數)

21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。

分數計算到最後,得數必須化成最簡分數。

個位上是0、2、4、6、8的數,都能被2整,即能用2進行

約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。

32、一天的時間:一天有24小時,一小時60分,1分60秒

『叄』 高二數學知識點及公式整理

只有高效的 學習 方法 ,才可以很快的掌握知識的重難點。有效的讀書方式根據規律掌握方法,不要一來就死記硬背,先找規律,再記憶,然後再學習,就能很快的掌握知識。以下是我給大家整理的 高二數學 知識點及公式整理,希望大家能夠喜歡!

高二數學知識點及公式整理1

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0

AB-AC=CB.即「共同起點,指向被減」

a=(x,y)b=(x',y')則a-b=(x-x',y-y').

4、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當λ>0時,λa與a同方向;

當λ<0時,λa與a反方向;

當λ=0時,λa=0,方向任意。

當a=0時,對於任意實數λ,都有λa=0。

註:按定義知,如果λa=0,那麼λ=0或a=0。

實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律

結合律:(λa)·b=λ(a·b)=(a·λb)。

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:①如果實數λ≠0且λa=λb,那麼a=b。②如果a≠0且λa=μa,那麼λ=μ。

3、向量的的數量積

定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數量積的坐標表示:a·b=x·x'+y·y'。

向量的數量積的運算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數量積的性質

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。

高二數學知識點及公式整理2

1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

高二數學知識點及公式整理3

1.計數原理知識點

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選後排,先分再排

排列組合題的主要解題方法:優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應用問題時,應注意:

(1)把具體問題轉化或歸結為排列或組合問題;

(2)通過分析確定運用分類計數原理還是分步計數原理;

(3)分析題目條件,避免「選取」時重復和遺漏;

(4)列出式子計算和作答.

經常運用的數學思想是:

①分類討論思想;②轉化思想;③對稱思想.

4.二項式定理知識點:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質和主要結論:對稱性Cnm=Cnn-m

二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數項二項式系數的和=偶數項而是系數的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。

5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。

6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。


高二數學知識點及公式整理相關 文章 :

★ 高二數學知識點總結

★ 高二數學知識點及公式2020

★ 高二數學知識點及公式

★ 高中數學知識點總結及公式大全

★ 高二數學知識點總結全

★ 高二數學函數知識點總結

★ 最新高二數學公式知識點匯總

★ 高二數學必背知識點總結

★ 高二數學知識點全總結

『肆』 高三數學知識點考點總結大全

數學是我們我們從小學到大的一門學科,如果能認認真真學下來,數學並不難,只是數學要下苦功去學,學會了很有意思。這次我給大家整理了 高三數學 知識點考點 總結 ,供大家閱讀參考。

高三數學知識點考點總結

1.定義:

用符號〉,=,〈號連接的式子叫不等式。

2.性質:

①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

3.分類:

①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。

②一元一次不等式組:

a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

4.考點:

①解一元一次不等式(組)

②根據具體問題中的數量關系列不等式(組)並解決簡單實際問題

③用數軸表示一元一次不等式(組)的解集

高三數學知識點

一、排列

1定義

(1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。

(2)從n個不同元素中取出m個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,記為Amn.

2排列數的公式與性質

(1)排列數的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:當m=n時,Amn=n!=n(n-1)(n-2)…×3×2×1

規定:0!=1

二、組合

1定義

(1)從n個不同元素中取出m個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合

(2)從n個不同元素中取出m個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數,用符號Cmn表示。

2比較與鑒別

由排列與組合的定義知,獲得一個排列需要「取出元素」和「對取出元素按一定順序排成一列」兩個過程,而獲得一個組合只需要「取出元素」,不管怎樣的順序並成一組這一個步驟。

排列與組合的區別在於組合僅與選取的元素有關,而排列不僅與選取的元素有關,而且還與取出元素的順序有關。因此,所給問題是否與取出元素的順序有關,是判斷這一問題是排列問題還是組合問題的理論依據。

三、排列組合與二項式定理知識點

1.計數原理知識點

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選後排,先分再排

排列組合題的主要解題 方法 :優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應用問題時,應注意:

(1)把具體問題轉化或歸結為排列或組合問題;

(2)通過分析確定運用分類計數原理還是分步計數原理;

(3)分析題目條件,避免「選取」時重復和遺漏;

(4)列出式子計算和作答.

經常運用的數學思想是:

①分類討論思想;②轉化思想;③對稱思想.

4.二項式定理知識點:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質和主要結論:對稱性Cnm=Cnn-m

二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數項二項式系數的和=偶數項而是系數的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。

5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。

6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。

高三數學考點總結

考點一:集合與簡易邏輯

集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,並向無限集發展,考查 抽象思維 能力。在解決這些問題時,要注意利用幾何的直觀性,並注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、「充要關系」、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。

考點二:函數與導數

函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬於容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恆成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。

考點三:三角函數與平面向量

一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、餘弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質或三角恆等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函數等結合,解決角度、垂直、共線等問題是「新 熱點 」題型.

考點四:數列與不等式

不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進行考查.在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問題的能力,它們都屬於中、高檔題目.

考點五:立體幾何與空間向量

一是考查空間幾何體的結構特徵、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

考點六:解析幾何

一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標准方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。

考點七:演算法復數推理與證明

高考對演算法的考查以選擇題或填空題的形式出現,或給解答題披層「外衣」.考查的熱點是流程圖的識別與演算法語言的閱讀理解.演算法與數列知識的網路交匯命題是考查的主流.復數考查的重點是復數的有關概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對於理科,數學歸納法可能作為解答題的一小問.

高三數學考點有哪些

1、圓柱體:

表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:

表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

3、正方體

a-邊長,S=6a2,V=a3

4、長方體

a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

5、稜柱

S-底面積h-高V=Sh

6、棱錐

S-底面積h-高V=Sh/3

7、稜台

S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

8、擬柱體

S1-上底面積,S2-下底面積,S0-中截面積

h-高,V=h(S1+S2+4S0)/6

9、圓柱

r-底半徑,h-高,C—底面周長

S底—底面積,S側—側面積,S表—表面積C=2πr

S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圓柱

R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

11、直圓錐

r-底半徑h-高V=πr^2h/3

12、圓台

r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

13、球

r-半徑d-直徑V=4/3πr^3=πd^3/6

14、球缺

h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台

r1和r2-球台上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

16、圓環體

R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑

V=2π2Rr2=π2Dd2/4

17、桶狀體

D-桶腹直徑d-桶底直徑h-桶高

V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

如何學好數學

首先你要有一個好的態度,有些人學習數學,可能有的階段會喜歡學習,但是某一階段,對數學就沒有什麼興趣了,可能每個人都會有這樣一個階段,但是如果發現自己不喜歡學習數學了,一定要剋制自己,在學習數學上,保持一個良好的 學習態度 ,這是你學好數學的第一步。

充分的利用好上課的時間,上課時間你所掌握的知識,會比你在課下學很長時間都有用,所以珍惜課堂老師所講的內容,老師的某些話對我們以後做數學題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時候,可能會走很多彎路,做題的效率也會降低,一旦有這樣的情況,可能你就會不喜歡數學了。

學習最重要的是思考,會思考數學才能學好,數學中的題都是需要我們去舉一反三的,沒做一道題,都要思考一下,圍繞著這道題的知識點,還會有什麼樣的題型出現,哪怕是遇到不會的題,也要勤加的思考,如果你把知識點自認為學習透徹,那麼就用做題檢驗吧,數學中多做題是必須的,成績都是用題堆積出來的,很少會有人不做題數學成績很高的。


高三數學知識點考點總結大全相關 文章 :

★ 高三數學重要知識點總結

★ 高三數學知識點總結與歸納

★ 高三數學知識點總結

★ 高三數學考試知識點總結

★ 高三數學重點知識點

★ 高三數學必考知識點總結整合

★ 高三重要數學知識點梳理

★ 高三數學第一輪復習知識點

★ 高三數學補習知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();