⑴ 初中數學函數知識點總結歸納
函數是初中數學重要的部分,我整理了一些函數的知識點。
正比例函數及性質
1、一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數。
註:正比例函數一般形式y=kx,k不為零
(1)k不為零;
(2)x指數為1;
(3)b取零。
2、當k>0時,直線y=kx經過三、一象限,從左向右上升,即隨x的增大y也增大;
3、當k<0時,直線y=kx經過二、四象限,從左向右下降,即隨x增大y反而減小。
(1)解析式:y=kx(k是常數,k≠0)
(2)必過點:(0,0)、(1,k)
(3)走向:k>0時,圖像經過一、三象限;k<0時,圖像經過二、四象限
(4)增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5)傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
一次函數及性質
1、一般地,形如y=kx+b(k、b是常數,k≠0),那麼y叫做x的一次函數。當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數。
註:一次函數一般形式y=kx+b,k不為零
(1)k不為零;
(2)0x指數為1;
(3)b取任意實數。
2、一次函數y=kx+b的圖象是經過(0,b)和(-k/b,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到。
(1)解析式:y=kx+b;
(2)必過點:(0,b)和(-k/b,0);
(3)走向:
(4)k>0,圖象經過第一、三象限;k<0,圖象經過第二、四象限;
(5)b>0,圖象經過第一、二象限;b<0,圖象經過第三、四象限。
二次函數
1、定義:一般地,自變數x和因變數y之間存在如下關系:y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函數的開口方向)。
2、二次函數的三種表達式
(1)一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
(2)頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
(3)交點式:y=a(x-x₁)(x-x₂)[僅限於與x軸有交點A(x₁,0)和B(x₂,0)的拋物線]
拋物線的性質
1、拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)。
2、拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3、二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
以上是我整理的函數的知識點,希望能幫到你。
⑵ 函數知識點有哪些
函數知識點有如下:
一、勾股定理:直角三角形兩直角邊a、b的平方和等於斜邊c的平方。
二、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數為(∠A可換成∠B)。
三、任意銳角的正弦值等於它的餘角的餘弦值;任意銳角的餘弦值等於它的餘角的正弦值。
四、任意銳角的正切值等於它的餘角的餘切值;任意銳角的餘切值等於它的餘角的正切值。
五、正弦、餘弦的增減性:當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。
六、正切、餘切的增減性: 當0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。
⑶ 高一數學函數知識點
(一)、映射、函數、反函數
1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射.
2、對於函數的概念,應注意如下幾點:
(1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數.
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函數關系式,特別是會求分段函數的解析式.
(3)如果y=f(u),u=g(x),那麼y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數.
3、求函數y=f(x)的反函數的一般步驟:
(1)確定原函數的值域,也就是反函數的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對換,得反函數的習慣表達式y=f-1(x),並註明定義域.
注意①:對於分段函數的反函數,先分別求出在各段上的反函數,然後再合並到一起.
②熟悉的應用,求f-1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算.
(二)、函數的解析式與定義域
1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變數間的對應法則的同時,求出函數的定義域.求函數的定義域一般有三種類型:
(1)有時一個函數來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;
(2)已知一個函數的解析式求其定義域,只要使解析式有意義即可.如:
①分式的分母不得為零;
②偶次方根的被開方數不小於零;
③對數函數的真數必須大於零;
④指數函數和對數函數的底數必須大於零且不等於1;
⑤三角函數中的正切函數y=tanx(x∈R,且k∈Z),餘切函數y=cotx(x∈R,x≠kπ,k∈Z)等.
應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集).
(3)已知一個函數的定義域,求另一個函數的定義域,主要考慮定義域的深刻含義即可.
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.
2、求函數的解析式一般有四種情況
(1)根據某實際問題需建立一種函數關系時,必須引入合適的變數,根據數學的有關知識尋求函數的解析式.
(2)有時題設給出函數特徵,求函數的解析式,可採用待定系數法.比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可.
(3)若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當於求函數的定義域.
(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.
(三)、函數的值域與最值
1、函數的值域取決於定義域和對應法則,不論採用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:
(1)直接法:亦稱觀察法,對於結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域.
(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.
(3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可採用此法求得.
(4)配方法:對於二次函數或二次函數有關的函數的值域問題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件「一正二定三相等」有時需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用「△≥0」求值域.其題型特徵是解析式中含有根式或分式.
(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函數的值域.
(8)數形結合法求函數的值域:利用函數所表示的幾何意義,藉助於幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域.
2、求函數的最值與值域的區別和聯系
求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.
如函數的值域是(0,16],最大值是16,無最小值.再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無最大值和最小值,只有在改變函數定義域後,如x>0時,函數的最小值為2.可見定義域對函數的值域或最值的影響.
3、函數的最值在實際問題中的應用
函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為「工程造價最低」,「利潤最大」或「面積(體積)最大(最小)」等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值.
(四)、函數的奇偶性
1、函數的奇偶性的定義:對於函數f(x),如果對於函數定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那麼函數f(x)就叫做奇函數(或偶函數).
正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恆等式.(奇偶性是函數定義域上的整體性質).
2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便於判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式:
注意如下結論的運用:
(1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那麼在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有「奇±奇=奇」「奇×奇=偶」,「偶±偶=偶」「偶×偶=偶」「奇×偶=奇」;
(3)奇偶函數的復合函數的奇偶性通常是偶函數;
(4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。
3、有關奇偶性的幾個性質及結論
(1)一個函數為奇函數的充要條件是它的圖象關於原點對稱;一個函數為偶函數的充要條件是它的圖象關於y軸對稱.
(2)如要函數的定義域關於原點對稱且函數值恆為零,那麼它既是奇函數又是偶函數.
(3)若奇函數f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。
(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(-x)是偶函數,G(x)=f(x)-f(-x)是奇函數.
(6)奇偶性的推廣
函數y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函數.函數y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數.
(五)、函數的單調性
1、單調函數
對於函數f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱為單調函數.
對於函數單調性的定義的理解,要注意以下三點:
(1)單調性是與「區間」緊密相關的概念.一個函數在不同的區間上可以有不同的單調性.
(2)單調性是函數在某一區間上的「整體」性質,因此定義中的x1,x2具有任意性,不能用特殊值代替.
(3)單調區間是定義域的子集,討論單調性必須在定義域范圍內.
(4)注意定義的兩種等價形式:
設x1、x2∈[a,b],那麼:
①在[a、b]上是增函數;
在[a、b]上是減函數.
②在[a、b]上是增函數.
在[a、b]上是減函數.
需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大於(或小於)零.
(5)由於定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這說明單調性使得自變數間的不等關系和函數值之間的不等關系可以「正逆互推」.
5、復合函數y=f[g(x)]的單調性
若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱「同增、異減」.
在研究函數的單調性時,常需要先將函數化簡,轉化為討論一些熟知函數的單調性。因此,掌握並熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過程.
6、證明函數的單調性的方法
(1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1<x2;②討論f(x1)>(或<)f(x2);③根據定義,得出結論.
(2)設函數y=f(x)在某區間內可導.
如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數.
(六)、函數的圖象
函數的圖象是函數的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識.
求作圖象的函數表達式
與f(x)的關系
由f(x)的圖象需經過的變換
y=f(x)±b(b>0)
沿y軸向平移b個單位
y=f(x±a)(a>0)
沿x軸向平移a個單位
y=-f(x)
作關於x軸的對稱圖形
y=f(|x|)
右不動、左右關於y軸對稱
y=|f(x)|
上不動、下沿x軸翻折
y=f-1(x)
作關於直線y=x的對稱圖形
y=f(ax)(a>0)
橫坐標縮短到原來的,縱坐標不變
y=af(x)
縱坐標伸長到原來的|a|倍,橫坐標不變
y=f(-x)
作關於y軸對稱的圖形
【例】定義在實數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.
①求證:f(0)=1;
②求證:y=f(x)是偶函數;
③若存在常數c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函數f(x)是不是周期函數,如果是,找出它的一個周期;如果不是,請說明理由.
思路分析:我們把沒有給出解析式的函數稱之為抽象函數,解決這類問題一般採用賦值法.
解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.
②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函數.
③分別用(c>0)替換x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=-f(x).
兩邊應用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),
所以f(x)是周期函數,2c就是它的一個周期.
點評:聯想公式cos(x+y)+cos(x-y)=2cosxcosy和特殊函數y=cosx是有益的.特值代入法在解選擇題時有奇效,有時對某些解答題的處理也很獨特,1996年全國高考理科數學壓軸題就是範例.
參考資料:http://caixinhua1010.blog.163.com/blog/static/10540100920098189309849/
⑷ 初中數學函數知識點總結
函數是初中數學的重要知識點,接下來給大家總結初中數學函數重要知識點,一起看一下具體內容,供參考。
一次函數知識點
1.一次函數
如果y=kx+b(k、b是常數,k≠0),那麼y叫做x的一次函數。
特別地,當b=0時,一次函數y=kx+b成為y=kx(k是常數,k≠0),這時,y叫做x的正比例函數。
2.一次函數的圖像及性質
(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。
(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)。
(3)正比例函數的圖像總是過原點。
(4)k,b與函數圖像所在象限的關系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
二次函數知識點
1.二次函數表達式
(一)頂點式
y=a(x-h)²+k(a≠0,a、h、k為常數),頂點坐標為(h,k),對稱軸為直線x=h,頂點的位置特徵和圖像的開口方向與函數y=ax²的圖像相同,當x=h時,y最大(小)值=k。
(二)交點式
y=a(x-x₁)(x-x₂) [僅限於與x軸即y=0有交點時的拋物線,即b²-4ac>0]
函數與圖像交於(x₁,0)和(x₂,0)
(三)一般式
y=aX²+bX+c=0(a≠0)(a、b、c是常數)
2.二次函數的對稱軸
二次函數圖像是軸對稱圖形。對稱軸為直線x=-b/2a
對稱軸與二次函數圖像唯一的交點為二次函數圖象的頂點P。
特別地,當b=0時,二次函數圖像的對稱軸是y軸(即直線x=0)。
a,b同號,對稱軸在y軸左側;
a,b異號,對稱軸在y軸右側。
3.二次函數圖像的對稱關系
(一)對於一般式:
①y=ax2+bx+c與y=ax2-bx+c兩圖像關於y軸對稱
②y=ax2+bx+c與y=-ax2-bx-c兩圖像關於x軸對稱
③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關於頂點對稱
④y=ax2+bx+c與y=-ax2+bx-c關於原點中心對稱。(即繞原點旋轉180度後得到的圖形)
(二)對於頂點式:
①y=a(x-h)2+k與y=a(x+h)2+k兩圖像關於y軸對稱,即頂點(h,k)和(-h,k)關於y軸對稱,橫坐標相反、縱坐標相同。
②y=a(x-h)2+k與y=-a(x-h)2-k兩圖像關於x軸對稱,即頂點(h,k)和(h,-k)關於x軸對稱,橫坐標相同、縱坐標相反。
③y=a(x-h)2+k與y=-a(x-h)2+k關於頂點對稱,即頂點(h,k)和(h,k)相同,開口方向相反。
④y=a(x-h)2+k與y=-a(x+h)2-k關於原點對稱,即頂點(h,k)和(-h,-k)關於原點對稱,橫坐標、縱坐標都相反。
⑸ 初中函數入門知識點總結
函數是初中數學的重要知識點,初中常見的函數有一次函數、二次函數等,接下來分享與函數有關的知識點。
函數的相關概念
1.函數:在某一變化過程中,如果有兩個變數x,y,並且對於x在某一范圍內的每一個確定的值,y都有唯一確定的值與其對應,那麼就說y是x的函數,x叫做自變數。
2.函數自變數的取值范圍函數自變數的取值范圍應使函數解析式有意義;應用問題中,自變數的取值范圍還應具有實際意義;求函數自變數的取值范圍的過程,實質上是解不等式或不等式組的過程;
3.常見自變數的取值范圍:分式型:分母不為0;二次根式型:被開方數大於等於0;分式、二次根式混合型:分母不為0,且被開方數大於等於0.
4.函數值:當函數自變數x取某一數值時,與之對應的唯一確定的y值,叫做這個函數當函數自變數取該值時的函數數值。
函數的分類
(一)常函數
x取定義域內任意數時,都有y=C(C是常數),則函數y=C稱為常函數,其圖象是平行於x軸的直線或直線的一部分。
(二)一次函數
1.一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。
2.一次函數有三種表示方法:
(1)解析式法:用含自變數x的式子表示函數的方法叫做解析式法。
(2)列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。
(3)圖像法:用圖象來表示函數關系的方法叫做圖象法。
(三)二次函數
1.二次函數的基本表示形式為y=ax²+bx+c(a≠0)。二次函數最高次必須為二次,二次函數的圖像是一條對稱軸與y軸平行或重合於y軸的拋物線。
2.頂點式:y=a(x-h)²+k 頂點坐標為(h,k)。
3.交點式:y=a(x-x₁)(x-x₂) 函數與圖像交於(x₁,0)和(x₂,0)。
函數的三種表示法
1.解析法:兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
2.列表法:用列表的方法來表示兩個變數之間函數關系的方法叫做列表法。這種方法的優點是通過表格中已知自變數的值,可以直接讀出與之對應的函數值;缺點是只能列出部分對應值,難以反映函數的全貌。
3.圖像法:把一個函數的自變數x與對應的因變數y的值分別作為點的橫坐標和縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。這種表示函數關系的方法叫做圖象法。這種方法的優點是通過函數圖象可以直觀、形象地把函數關系表示出來;缺點是從圖象觀察得到的數量關系是近似的。
一次函數的圖像及性質
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)正比例函數的圖像總是過原點。
3.k,b與函數圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
⑹ 初中數學函數知識點歸納
函數在初中數學中分值佔比較大,一次函數、二次函數和反比例函數都會考查,所以我歸納了有關初中數學函數的知識點,趕快記起來吧!
一次函數知識歸納
(1)一次函數
如果y=kx+b(k、b是常數,k≠0),那麼y叫做x的一次函數。
特別地,當b=0時,一次函數y=kx+b成為y=kx(k是常數,k≠0),這時,y叫做x的正比例函數。
(2)一次函數的圖象
一次函數y=kx+b的圖象是一條經過(0,b)點和點的直線。
特別地,正比例函數圖象是一條經過原點的直線。
需要說明的是,在平面直角坐標系中,「直線」並不等價於「一次函數y=kx+b(k≠0)的圖象」,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數圖象。
(3)一次函數的性質
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
直線y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為。
(4)用函數觀點看方程(組)與不等式
①任何一元一次方程都可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時,求相應的自變數的值,從圖象上看,相當於已知直線y=kx+b,確定它與x軸交點的橫坐標。
②二元一次方程組對應兩個一次函數,於是也對應兩條直線,從「數」的角度看,解方程組相當於考慮自變數為何值時兩個函數值相等,以及這兩個函數值是何值;從「形」的角度看,解方程組相當於確定兩條直線的交點的坐標。
③任何一元一次不等式都可以轉化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大於0或小於0時,求自變數相應的取值范圍。
反比例函數知識點總結
(1)反比例函數:如果(k是常數,k≠0),那麼y叫做x的反比例函數。
(2)反比例函數的圖象:反比例函數的圖象是雙曲線。
(3)反比例函數的性質
①當k>0時,圖象的兩個分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減小。
②當k<0時,圖象的兩個分支分別在第二、四象限內,在各自的象限內,y隨x的增大而增大。
③反比例函數圖象關於直線y=±x對稱,關於原點對稱。
(4)k的兩種求法
①若點(x0,y0)在雙曲線上,則k=x0y0。
②k的幾何意義:若雙曲線上任一點A(x,y),AB⊥x軸於B,則S△AOB。
(5)正比例函數和反比例函數的交點問題
若正比例函數y=k1x(k1≠0),反比例函數,則
當k1k2<0時,兩函數圖象無交點;
當k1k2>0時,兩函數圖象有兩個交點,由此可知,正反比例函數的圖象若有交點,兩交點一定關於原點對稱。
二次函數知識點
1.二次函數
如果y=ax2+bx+c(a,b,c為常數,a≠0),那麼y叫做x的二次函數。
幾種特殊的二次函數:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0)。
2.二次函數的圖象
二次函數y=ax2+bx+c的圖象是對稱軸平行於y軸的一條拋物線。
由y=ax2(a≠0)的圖象,通過平移可得到y=a(x-h)2+k(a≠0)的圖象。
3.二次函數的性質
二次函數y=ax2+bx+c的性質對應在它的圖象上,有如下性質:
(1)拋物線y=ax2+bx+c的頂點是,對稱軸是直線,頂點必在對稱軸上;
(2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對於拋物線上的任意一點(x,y),當x<0時,y隨x的增大而減小;當x>0時,y隨x的增大而增大;當x=0,y有最小值;
若a<0,拋物線y=ax2+bx+c的開口向下,因此,對於拋物線上的任意一點(x,y),當x<0,y隨x的增大而增大;當x>0時,y隨x的增大而減小;當x=0時,y有最大值;
(3)拋物線y=ax2+bx+c與y軸的交點為(0,c);
(4)在二次函數y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:
當△=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是A(x1,0)和B(x2,0),這兩點的距離為AB=|x2-x1|;當△=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點;當△<0時,拋物線y=ax2+bx+c與x軸沒有公共點。
4.拋物線的平移
拋物線y=a(x-h)2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h)2+k.平移的方向、距離要根據h、k的值來決定。