當前位置:首頁 » 基礎知識 » 高1數學最難的知識
擴展閱讀
談談如何愛同學 2024-11-22 17:07:36
相關知識點匯總大全 2024-11-22 16:45:49

高1數學最難的知識

發布時間: 2024-11-11 01:20:26

1. 高中數學 哪一部分最難

首先看個人的基礎、
看你的強項與弱項必修一 集合 函數 函數的應用 就這三塊內容
必修二 立體幾何和解析幾何2塊內容
必修三 概率 統計和演算法,這本是最容易的
必修四 三角函數 平面向量
必修五 解三角形(正弦定理和餘弦定理) 數列 不等式
選修2-1 圓錐曲線 空間向量
選修2-2 倒數 推理與證明 數系與復數
選修2-3 排列組合 隨機變數
剩下的選修4開頭的就是選講了 內容有幾何證明 矩陣與變換 不等式精選等等。

如果你的每個知識點都學得不是很明白,不透徹
那麼最後出題人將眾多知識點融合在一起,那就是最難的!
所以,么一個知識點都要學好,學透。

加油!

2. 本科的高等數學里,那一個部分比較難,難以理解,清各位學長指教

是的,高等數學最難的地方就是極限的概念,可以說這部分是貫穿始終的,以後就會發現後面的很多都是以這個為基礎,要是理解好的話後面的學習就相對輕松多了。剛開始學不明白是正常的,首先這部分比較抽象,不好理解,而且大學的講課方式和高中不一樣,講的很快,可能你還沒理解老師就講完了,或者總想找點參考書看。其實大家的感覺都一樣。
具體的學習方法就是上課一定要認真聽,認真記筆記,可以說考試的東西全都是課堂講的那些,絕對不可能超出課堂講的范圍。參考書沒必要,把教材上的內容看懂,課後題都做了就足夠了,不懂就問老師,不會不給你講的。
對於考試,重點是課堂上講的例題,那些都是典型題,肯定是考試的重點。最壞的情況,哪怕不理解也要把過程背下來,考試起碼能應付。但是,要想得個好分數,光背是不夠的,一定要理解概念。當然這需要時間,即使不能馬上都掌握,也別灰心。

3. 高一數學必修一重點知識歸納總結

將高中數學的重點知識歸納總結,有利於提高自己的學習效率。下面是由我為大家整理的「高一數學必修一重點知識歸納總結」,僅供參考,歡迎大家閱讀本文。

高一數學必修一知識點歸納1

一、集合有關概念

1.集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2.集合的中元素的三個特性:

(1)元素的確定性如:行兄世界上的山;

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y};

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合。

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5};

(2)集合的表示方法:列舉法與描述法。

非負整數集(即自然數集)記作:N;

正整數集:N_或N+;

整數集:Z;

有理數集:Q;

實數集:R。

1)列舉法:{a,b,c……};

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{x?R|x-3>2},{x|x-3>2};

3)語言描述法:例:{不是直角三角形的三角形}。

4、集合的分類:

(1)有限集含有有限個元素的集合;

(2)無限集譽悉含有無限個元素的集合;

(3)空集不含任何元素的集合例:{x|x2=-5}。

二、集合間的基本關系

1.「包含」關系—子集;

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA。

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)。

實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」。

即:①任何一個集合是它本身的子集。AíA。

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)。

③如果AíB,BíC,那麼AíC。

④如果AíB同時BíA那麼A=B。

3.不含任何元素的集合叫做空集,記為Φ。

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集。

三、集合的運算

運算類型交集並集補集;

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB}).

高一數學必修一知識點歸納2

1、柱、錐、台、球的結構特徵

(1)稜柱:

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點。

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊檔虛襲旋轉所成。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成。

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體。

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

4、柱體、錐體、台體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和;

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)。

高一數學必修一知識點歸納3

1.「包含」關系—子集。

注意:有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA。

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」。

即:①任何一個集合是它本身的子集。A(A。

②真子集:如果A(B,且A(B那就說集合A是集合B的真子集。

③如果A(B,B(C,那麼A(C。

④如果A(B同時B(A那麼A=B。

3.不含任何元素的集合叫做空集,記為Φ。

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集。

拓展閱讀:學習數學需要注意什麼

1、課內重視聽講,課後及時復習

接受一種新的知識,主要實在課堂上進行的,所以要重視課堂上的學習效率,找到適合自己的學習方法,上課時要跟住老師的思路,積極思考。下課之後要及時復習,遇到不懂的地方要及時去問,在做作業的時候,先把老師課堂上講解的內容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急於翻看答案。還要經常性的總結和復習,把知識點結合起來,變成自己的知識體系。

2、多做題,養成良好的解題習慣

要想學好數學,大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數學成績。剛開始做題的時候先以書上習題為主,答好基礎,然後逐漸增加難度,開拓思路,練習各種類型的解題思路,對於容易出現錯誤的題型,應該記錄下來,反復加以聯系。在做題的時候應該養成良好的解題習慣,集中注意力,這樣才能進入最佳的狀態,形成習慣,這樣在考試的時候才能運用自如。

4. 高中數學必修1知識點

高中高一數學必修1各章知識點總結
第一章 集合與函數概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.
(4)集合元素的三個特性使集合本身具有了確定性和整體性.
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法.
注意啊:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上.
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法.用確定的條件表示某些對象是否屬於這個集合的方法.
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.「相等」關系(5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集.AíA
②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AíB, BíC ,那麼 AíC
④ 如果AíB 同時 BíA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
A∪φ= A ,A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x | x?S且 x?A}
S

CsA

A

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3 函數的定義域、值域要寫成集合或區間的形式.
定義域補充
能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零; (2)偶次方根的被開方數不小於零; (3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零 (6)實際問題中的函數的定義域還要保證實際問題有意義.
(又注意:求出不等式組的解集即為函數的定義域.)
構成函數的三要素:定義域、對應關系和值域
再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關.相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
值域補充
(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎.
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.
C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }
圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成.
(2) 畫法
A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.
B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路.提高解題的速度.
發現解題中的錯誤.
4.快去了解區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.
5.什麼叫做映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射.記作「f:A B」
給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象.
常用的函數表示法及各自的優點:
1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;2 解析法:必須註明函數的定義域;3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.
注意啊:解析法:便於算出函數值.列表法:便於查出函數值.圖象法:便於量出函數值
補充一:分段函數 (參見課本P24-25)
在定義域的不同部分上有不同的解析表達式的函數.在不同的范圍里求函數值時必須把自變數代入相應的表達式.分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.
補充二:復合函數
如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數.
例如: y=2sinX y=2cos(X2+1)
7.函數單調性
(1).增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1