當前位置:首頁 » 基礎知識 » 八年級數學下冊知識點梳理框架圖
擴展閱讀
愛的教育原名叫什麼名 2024-11-13 13:55:43
兒童的臼齒什麼時候掉 2024-11-13 13:54:39

八年級數學下冊知識點梳理框架圖

發布時間: 2024-11-10 21:19:07

㈠ 八年級下冊數學的知識點有哪些

第十六章 分式
1. 分式的定義:如果A、B表示兩個整式,並且B中含有字母,那麼式子 叫做分式。
分式有意義的條件是分母不為零,分式值為零的條件分子為零且分母不為零
2.分式的基本性質:分式的分子與分母同乘或除以一個不等於0的整式,分式的值不變。
3.分式的通分和約分:關鍵先是分解因式
4.分式的運算:
分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
分式乘方法則: 分式乘方要把分子、分母分別乘方。
分式的加減法則:同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變為同分母分式,然後再加減
混合運算:運算順序和以前一樣。能用運算率簡算的可用運算率簡算。
5. 任何一個不等於零的數的零次冪等於1, 即 ;當n為正整數時,
6.正整數指數冪運算性質也可以推廣到整數指數冪.(m,n是整數)
(1)同底數的冪的乘法: ;
(2)冪的乘方: ;
(3)積的乘方: ;
(4)同底數的冪的除法: ( a≠0);
(5)商的乘方: ();(b≠0)
7. 分式方程:含分式,並且分母中含未知數的方程——分式方程。
解分式方程的過程,實質上是將方程兩邊同乘以一個整式(最簡公分母),把分式方程轉化為整式方程。
解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。
解分式方程的步驟 :
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;(3)解整式方程;(4)驗根.
增根應滿足兩個條件:一是其值應使最簡公分母為0,二是其值應是去分母後所的整式方程的根。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
列方程應用題的步驟是什麼? (1)審;(2)設;(3)列;(4)解;(5)答.
應用題有幾種類型;基本公式是什麼?基本上有五種: (1)行程問題:基本公式:路程=速度×時間而行程問題中又分相遇問題、追及問題. (2)數字問題 在數字問題中要掌握十進制數的表示法. (3)工程問題 基本公式:工作量=工時×工效. (4)順水逆水問題 v順水=v靜水+v水. v逆水=v靜水-v水.
8.科學記數法:把一個數表示成 的形式(其中 ,n是整數)的記數方法叫做科學記數法.
用科學記數法表示絕對值大於10的n位整數時,其中10的指數是
用科學記數法表示絕對值小於1的正小數時,其中10的指數是第一個非0數字前面0的個數(包括小數點前面的一個0)


第十七章 反比例函數
1.定義:
2.圖像:反比例函數的圖像屬於雙曲線。反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點
3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。
5.反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。

1、反比例函數的概念
一般地,函數 (k是常數,k 0)叫做反比例函數。反比例函數的解析式也可以寫成 的形式。自變數x的取值范圍是x 0的一切實數,函數的取值范圍也是一切非零實數。
2、反比例函數的圖像
反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位於第一、三象限,或第二、四象限,它們關於原點對稱。由於反比例函數中自變數x 0,函數y 0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
3、反比例函數的性質
反比例函數

k的符號 k>0 k<0
圖像
y

O x

y

O x

性質 ①x的取值范圍是x 0,
y的取值范圍是y 0;
②當k>0時,函數圖像的兩個分支分別
在第一、三象限。在每個象限內,y
隨x 的增大而減小。 ①x的取值范圍是x 0,
y的取值范圍是y 0;
②當k<0時,函數圖像的兩個分支分別
在第二、四象限。在每個象限內,y
隨x 的增大而增大。

4、反比例函數解析式的確定
確定及誒是的方法仍是待定系數法。由於在反比例函數 中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。
5、反比例函數中反比例系數的幾何意義
如下圖,過反比例函數 圖像上任一點P作x軸、y軸的垂線PM,PN,則所得的矩形PMON的面積S=PM PN= 。


第十七章 反比例函數
1.定義:形如y= (k為常數,k≠0)的函數稱為反比例函數。其他形式xy=k

2.圖像:反比例函數的圖像屬於雙曲線。反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點
3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。

㈡ 八年級下的數學思維導圖

數學思維導圖便是一種很好的教學方法,能促進建構性學習和知識整合,從而提高學習效率。今天我為大家帶來了八年級下的數學思維導圖,一起來看看吧!

八年級下的數學思維導圖匯總

八年級數學下冊《反比例函數》知識點整理

1.定義:形如y= (k為常數,k≠0)的函數稱為反比例函數。

2.其他形式 xy=k (k為常數,k≠0)都是。

3.圖像:反比例函數的圖像屬於雙曲線。

反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。

有兩條對稱軸:直線y=x和 y=-x。 對稱中心是:原點

3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小。

當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。

4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸

所作的垂線段與兩坐標軸圍成的矩形的面積。

八年級數學下冊勾股定理知識點總結

1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼a2+b2=c2。

2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那麼這個三角形是直角三角形。

3.經過證明被確認正確的命題叫做定理。

我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那麼另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)


㈢ 八年級下冊數學思維導圖+重點知識梳理(1)

歡迎來到八年級下冊數學探索之旅,今天我們將一起梳理關鍵知識點,用思維導圖的方式幫助你輕松掌握!


在八年級的數學世界裡,每一章都充滿了邏輯與創新,而下冊更是深入淺出地呈現了新的數學理念。首先,讓我們從代數的橋梁——方程出發,理解一元一次方程、一元二次方程的解法,這是構建數學大廈的基礎。方程的解法和應用,就像一把鑰匙,開啟了解數學之門。


接著,函數的世界在等待你的探索。一次函數、二次函數、反比例函數,它們的圖像和性質,將讓你對函數的規律有更深的理解。圖形的變化,猶如數學的語言,講述著函數之間的關系。


幾何的魅力不容忽視,平面幾何的三角形、平行四邊形,立體幾何的體積和表面積,每一個定理都像一座座數學的金字塔,需要你一層層攀登,領略其背後的奧秘。


概率和統計則是數學的另一個重要分支,通過對隨機事件的理解,我們學會了預測和決策,用數據說話,用概率思考,讓你在日常生活中也能運用自如。


最後,數論的瑰寶,如質數、合數、最大公約數和最小公倍數,這些看似抽象的概念,其實隱藏著自然界的奇妙規律,等待你去發現和欣賞。


通過這系列的思維導圖,希望你能清晰地把握八年級下冊數學的核心知識點,每一章都是一次思維的飛躍。記得,實踐是檢驗真理的唯一標准,讓我們在每一次的計算和解題中,鞏固和深化我們的理解。


在你的學習旅程中,如果遇到任何困惑,別忘了回頭看看這思維導圖,它就像你的數學導航,指引你前進。祝願你在數學的海洋中,乘風破浪,探索無盡的智慧!

㈣ 數學八年級下冊4、5單元知識點整理怎麼畫

1、首先,整理八年級下冊4、5單元的所有知識點。
2、其次,根據不同知識的類型,進行分類。
3、然後,根據分類在紙上畫出大體輪廓。
4、最後,將知識點現在紙上,並進行上色即可

㈤ 如何學好八年級數學思維導圖高效學習法

八年級數學思維導圖,你是想把思維導圖方法用到初二數學學習中,那就只能學華東師大思維可視化研究團隊的學科思維導圖,

學科思維導圖可以用於數學知識歸納,分析問題,題型解析,試卷分析,策略總結,拓展思維,發展系統思考能力等等。

根據學科思維導圖概念提出者劉濯源教授對它的三種分型,你可以用其中兩種學科思維導圖解決數學中的不同問題:

歸納型學科思維導圖——數學知識點歸納,將知識結構化,有助理解性記憶;

分析型學科思維導圖——用於數學解題中,梳理結構和線索等。

具體繪制,你到劉濯源教授新浪博客中下載幾張數學學科思維導圖例圖,先模仿練習練習。

上圖轉自劉濯源教授新浪博客

㈥ 八年級數學的思維導圖

數學思維導圖可以幫助我們提高復習效率。下面我精心整理了八年級數學的思維導圖,供大家參考,希望你們喜歡!

八年級數學的思維導圖:全等三角形

八年級數學的思維導圖因式分解

1. 因式分把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.

2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

3.公因式的確定:系數的最大公約數?相同因式的最低次冪.

注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

4.因式分解的公式:

(1)平方差公式: a2-b2=(a+ b)(a- b);

(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

5.因式分解的注意事項:

(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;

(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

(3)因式分解的最後結果要求分解到每一個因式都不能分解為止;

(4)因式分解的最後結果要求每一個因式的首項符號為正;

(5)因式分解的最後結果要求加以整理;

(6)因式分解的最後結果要求相同因式寫成乘方的形式.

6.因式分解的解題技巧:(1)換位整理,加括弧或去括弧整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括弧或全部括弧;(10)拆項或補項.

7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對於二次三項式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.

分式

1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為 的形式,如果B中含有字母,式子 叫做分式.

2.有理式:整式與分式統稱有理式;即 .

3.對於分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.

4.分式的基本性質與應用:

(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;

(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;

(3)繁分式化簡時,採用分子分母同乘小分母的最小公倍數的方法,比較簡單.

5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經常需要先因式分解.

6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最後結果要求化為最簡分式.

7.分式的乘除法法則: .

8.分式的乘方: .

9.負整指數計演算法則:

(1)公式: a0=1(a≠0), a-n= (a≠0);

(2)正整指數的運演算法則都可用於負整指數計算;

(3)公式: , ;

(4)公式: (-1)-2=1, (-1)-3=-1.


㈦ 八年級下冊數學重點知識點總結

八年級下冊數學知識點很多,希望同學們可以整理成系統的知識框架,方便學習和復習,接下來給大家分享八年級下冊數學知識點,供參考。

一次函數知識點

(一)一般地,形如y=kx+b(k,b是常數,且k≠0)的函數,叫做一次函數,其中x是自變數。當b=0時,一次函數y=kx,又叫做正比例函數。

(二)一次函數的圖像及性質

1.在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。

2.一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)。

3.正比例函數的圖像總是過原點。

4.k,b與函數圖像所在象限的關系:

當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。

當k>0,b>0時,直線通過一、二、三象限;

當k>0,b<0時,直線通過一、三、四象限;

當k<0,b>0時,直線通過一、二、四象限;

當k<0,b<0時,直線通過二、三、四象限;

當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

分解因式

一、公式:1、ma+mb+mc=m(a+b+c);

2、a2-b2=(a+b)(a-b);

3、a22ab+b2=(ab)2。

二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。

1、把幾個整式的積化成一個多項式的形式,是乘法運算。

2、把一個多項式化成幾個整式的積的形式,是因式分解。

3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形。

三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.

四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.

五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

分解因式的方法:1、提公因式法.2、運用公式法。

數據的收集與處理

1、普查的定義:這種為了一定目的而對考察對象進行的全面調查,稱為普查。

2、總體:其中所要考察對象的全體稱為總體。

3、個體:組成總體的每個考察對象稱為個體

4、抽樣調查:從總體中抽取部分個體進行調查,這種調查稱為抽樣調查。

5、樣本:其中從總體中抽取的一部分個體叫做總體的一個樣本。

6、當總體中的個體數目較多時,為了節省時間、人力、物力,可採用抽樣調查。為了獲得較為准確的調查結果,抽樣時要注意樣本的代表性和廣泛性。還要注意關注樣本的大小。

7、我們稱每個對象出現的次數為頻數。而每個對象出現的次數與總次數的比值為頻率。

㈧ 如何在數學教學中使用思維導圖

一、樹形思維導圖

學生運用樹形圖對數學知識進行梳理比較熟練。學生在生活中早已認識了樹的形狀,對樹干、樹枝、樹葉及分枝的感知非常清晰,也就很容易的聯想到樹干、樹枝與主題、分主題的邏輯關系。所以學生運用樹形圖的時候比較多,也繪制的比較好。

如圖1是蘇科版數學八年級下冊第10章分式的樹形思維導圖.