當前位置:首頁 » 基礎知識 » 現代數學知識點大全
擴展閱讀
老人的歌詞怎麼寫 2024-11-23 07:55:14
基礎澆搗多久後可以回填 2024-11-23 07:54:28

現代數學知識點大全

發布時間: 2024-11-04 20:18:52

① 初二數學上冊重點知識點總結

初中生在學習數學的過程中應該注意知識點的總結,下面總結了初二數學上冊知識點,供大家參考。

位置與坐標

1.確定位置

在平面內,確定一個物體的位置一般需要兩個數據。

2.平面直角坐標系

①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。

③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。

④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。

⑤在直角坐標系中,對於平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上唯一的一點與它對應。

3.軸對稱與坐標變化

關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。

一次函數

(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。

(二)函數三要素

1.定義域:設x、y是兩個變數,變數x的變化范圍為D,如果對於每一個數x∈D,變數y遵照一定的法則總有確定的數值與之對應,則稱y是x的函數,記作y=f(x),x∈D,x稱為自變數,y稱為因變數,數集D稱為這個函數的定義域。

2.在函數經典定義中,因變數改變而改變的取值范圍叫做這個函數的值域,在函數現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。如:f(x)=x,那麼f(x)的取值范圍就是函數f(x)的值域。

3.對應法則:一般地說,在函數記號y=f(x)中,「f」即表示對應法則,等式y=f(x)表明,對於定義域中的任意的x值,在對應法則「f」的作用下,即可得到值域中唯一y值。

(三)一次函數的表示方法

1.解析式法:用含自變數x的式子表示函數的方法叫做解析式法。

2.列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。

3.圖像法:用圖象來表示函數關系的方法叫做圖象法。

(四)一次函數的性質

1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。

2.當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。

3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。

4.當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。

5.函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交於Y軸;當k互為負倒數時,兩直線垂直。

6.平移時:上加下減在末尾,左加右減在中間。

全等三角形

1.經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。

2.三角形全等的判定

(1)SSS(邊邊邊)

三邊對應相等的三角形是全等三角形。

(2)SAS(邊角邊)

兩邊及其夾角對應相等的三角形是全等三角形。

(3)ASA(角邊角)

兩角及其夾邊對應相等的三角形全等。

(4)AAS(角角邊)

兩角及其一角的對邊對應相等的三角形全等。

(5)RHS(直角、斜邊、邊)

在一對直角三角形中,斜邊及另一條直角邊相等。

3.角平分線

(1)從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線。

(2)性質

①角平分線分得的兩個角相等,都等於該角的一半。

②角平分線上的點到角的兩邊的距離相等。

分式

(一)分式的運算

分式四則運算,順序乘除加減,

乘除同級運算,除法符號須變(乘),

乘法進行化簡,因式分解在先,

分子分母相約,然後再行運算,

加減分母需同,分母化積關鍵,

找出最簡公分母,通分不是很難,

變號必須兩處,結果要求最簡。

(二)分式的運演算法則

(1)約分

①如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去。

②分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去。

(2)公因式的提取方法

系數取分子和分母系數的最大公約數,字母取分子和分母共有的字母,指數取公共字母的最小指數,即為它們的公因式。

(3)除法

兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。

(4)乘方

分子乘方做分子,分母乘方做分母,可以約分的約分,最後化成最簡。

圖形的平移與旋轉

1.平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。

2.平移性質

(1)圖形平移前後的形狀和大小沒有變化,只是位置發生變化。

(2)圖形平移後,對應點連成的線段平行(或在同一直線上)且相等。

② 四年級數學青島版知識點

知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是我給大家整理的一些 四年級數學 的知識點,希望對大家有所幫助。

四年級上冊數學基礎知識

1、線

⑴直線

直線沒有端點;長度無限;過一點可以畫無數條,過兩點只能畫一條直線。

⑵射線

射線只有一個端點;長度無限。

⑶線段

線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。

兩點之間線段的長度就是兩點間的距離。

直線射線線段的聯系:都是直的,射線和線段都是直線的一部分。

⑷同一平面內兩條直線的位置關系有平行和相交兩種。

⑸平行線

【定義】在同一平面內,不相交的兩條直線叫做平行線。直線a平行於b,直線b也平行於a。

【性質】過直線外一點只能畫一條直線與已知直線平行。

兩條平行線之間的垂直線段有無數條,長度都相等。平行線間垂直線段處處相等。

【畫法】一合,二靠,三移,四畫。

⑹垂線

【定義】兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。

【性質】

過一點(直線上或直線外)只能畫一條直線與已知直線垂直。

從直線外一點到這條直線所畫的垂直線段最短,它的長度叫做點到直線的距離

【畫法】一合,二過,三畫,四標。

2、角

(1)角的定義從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。

(2)角的度量角的計量單位是"度",用符號"°"表示。把半圓分成180等份,每一份所對的角的大小是1度。記作"1°"。

(3)角的大小比較角的大小與角的兩邊畫出的長短沒有關系。角的大小要看兩條邊叉開的大小,叉開得越大,角越大。

(4)角的畫法一畫線,二量角,三連線,四標注。一副三角板可以畫出的角的度數是15的倍數。

(5)角的分類

①銳角:小於90°的角叫做銳角。

②直角:等於90°的角叫做直角。

③鈍角:大於90°而小於180°的角叫做鈍角。

④平角:角的兩邊成一條直線,所組成的角叫做平角。平角180°。

⑤周角:角的一邊旋轉一周,與另一邊重合。周角是360°。

四年級數學知識

1.大數的認識

億以內的數的認識:

十萬:10個一萬;

一百萬:10個十萬;

一千萬:10個一百萬;

一億:10個一千萬;

2.數級

數級是為便於人們記讀阿拉伯數的一種識讀 方法 ,在位值制(數位順序)的基礎上,以三位或四位分級的原則,把數讀,寫出來。通常在阿拉伯數的書寫上,以小數點或者空格作為各個數級的標識,從右向左把數分開。

3.數級分類

(1)四位分級法

即以四位數為一個數級的分級方法。我國讀數的習慣,就是按這種方法讀的。

如:萬(數字後面4個0)、億(數字後面8個0)、兆(數字後面12個0,這是中法計數)……

這些級分別叫做個級,萬級,億級……

(2)三位分級法

即以三位數為一個數級的分級方法。這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數字後面3個0、百萬,數字後面6個0、十億,數字後面9個0……。

4.數位

數位是指寫數時,把數字並列排成橫列,一個數字佔有一個位置,這些位置,都叫做數位。從右端算起,第一位是「個位」,第二位是「十位」,第三位是「百位」,第四位是「千位」,第五位是「萬位」,等等。這就說明計數單位和數位的概念是不同的。

5.數的產生

阿拉伯數字的由來:古代印度人創造了阿拉伯數字後,大約到了公元7世紀的時候,這些數字傳到了阿拉伯地區。到13世紀時,義大利數學家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯數字做了詳細的介紹。後來,這些數字又從阿拉伯地區傳到了歐洲,歐洲人只知道這些數字是從阿拉伯地區傳入的,所以便把這些數字叫做阿拉伯數字。以後,這些數字又從歐洲傳到世界各國。

阿拉伯數字傳入我國,大約是13到14世紀。由於我國古代有一種數字叫「籌碼」,寫起來比較方便,所以阿拉伯數字當時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數學成就的吸收和引進,阿拉伯數字在我國才開始慢慢使用,阿拉伯數字在我國推廣使用才有100多年的歷史。阿拉伯數字現在已成為人們學習、生活和交往中最常用的數字了。

四年級 數學 學習方法

一、讓活動帶領學生走進數學殿堂。

興趣是的老師,興趣是的動力。學生的求知興趣一旦被調動起來,他們就會積極參與,努力探索,專心傾聽的學習習慣是學生主動參與學習過程,提高課堂學習效率的前提,而興趣也是專心傾聽的根本。因此針對低年級學生活潑好動、控制能力差、精神集中不持久等特點,在課堂上,教師盡可能把枯燥乏味的單純的知識教學變得生動、有趣,充分激發起學生的學習興趣,為了吸引學生的注意力,使他們上課專心聽講,教師上課時一定要精神飽滿,力求語言生動有趣,條理分明,使課堂引人入勝,使每個學生樂意聽。讓學生能夠做到堅持專心傾聽,並在專心聽講的基礎上,讓學生能更快更牢的掌握課堂知識,讓學生的語言和表達能力也得到更大的提高。

的美國 教育 家杜威認為,教育即生活。在教學活動中加入具體的活動,並讓學生參與其中,這就給了學生更多的實踐數學知識的機會。如,在學習分數加減法的時候,設計一次超市購物的活動,把不同的商品標價定為各個小數,讓一部分學生作為顧客購買商品,另一部分學生作為售貨員,計算「顧客」所購買商品的總價格。學生在老師的引導下,在體驗超市購物的同時學會了小數的加減法及其應用。教學過程中的參與性活動讓學生有了自主參與的機會,他們體驗到了數學應用的樂趣和數學學習的快樂。設計精彩的活動會讓學生學習興趣大增,參與意識強烈,對於數學教學有很大的促進作用。

二、培養學生從生活中發現數學和應用數學的興趣。

數學來源於生活。教師要培養學生學會從生活實際出發,從平時看得見、摸得著的周圍實物開始,在具體、形象中感知數學、學習數學、發現數學和實踐數學的興趣。如:我在教學《觀察物體》中「鏡面對稱」的內容時,先讓同學都去照一下鏡子,然後在小組立交流:人在鏡子里的特點,鏡子內外人的前後、上下、左右的位置有沒有變化,學生通過活動和交流能 總結 出:照鏡子時內外的人上下、前後不會發生改變,而左右位置發生對換。

1、為了讓課堂變得生動一點,我們要在教學中力求措辭用語生動形象、帶有強烈情感,語調抑揚頓挫,語氣和緩而帶有變化。對於學生的評價,我們也要注意措辭和語氣,給予強化性的鼓勵贊揚。數學教學中,我們努力使自己做到活潑多樣,動靜結合,從而調動學生學習的積極性,使學生隨時隨地樂意積極表達自己的看法和想法,由想動口到想動手。因為動口和動手都是促使學生動腦的途徑。

2、領略數學教材無聲語言的作用。在數學教材的每一節都安排了例題,而這些例子全都是經過精心設計,符合各層次學生的實際情況,大多都是圖文並茂的。我在教學之中注重引導學生通過例題去體會學數學的實用性、可行性和重要性。作為教師,除了把那無聲的文字變成有聲的語言,來教育鼓勵學生,使學生的情感和情趣融合在一起,把學生從課堂引入現實生活當中,從而達到既教書又育人的目的。

3、運用現代手段,多層次增加數學知識給學生的各種感觀刺激。多媒體軟體或課件,讓我們把數學知識分解成直觀形象的元素,通過視覺、聽覺等感觀刺激傳遞到學生的心靈。從而調動學生學習數學的積極細胞。

三、滲透藝術教育,激發學習興趣。

1、通過動口、動手,豐富表象。

我在教「正方形面積」一課時,先讓學生把身邊的正方形找出來,然後讓學生對面積大小進行比較,再自己動手畫畫一角是怎樣的動手畫畫正方形,並想想它們的面積大小為什麼不一樣,如何求正方形的面積。在總結完正方形面積的求法後,又讓學生進行比賽,看誰計算得快,最後舉例說明在日常生活當中如何計算正方形物品的面積。

2、調動學生積極性,各抒己見,注重應用。

數學學科除了注重培養學生的思維能力以外,千萬不能忽視學生口頭表達的能力。學生學習數學以後,對於知識和應用,大多有各種想法。我們不能認為口頭表達能力訓練是語文課的專利。此時,讓學生多一點發表自己的想法和高見,會對提高學生學習數學的興趣有不容忽視的幫助;同時我們還培養了學生追求真知的熱情;也消除學生學習緊張的情況,使學生在輕松愉快的環境中牢牢掌握知識。

3、舉一反三,培養創造能力。

讓學生通過親身體驗,直接參與,在活動中產生思想,充分給學生動手操作,以動腦思想的機會來激發他們的學習興趣。我們除了以各種方法激發學生的求知慾外,還要注意培養學生的創造能力,即舉一反三能力,從而擴展學生思維,增長學生知識。如教「平行四邊形面積」時讓學生通過把兩個完全一樣的平行四邊形拼成長方形的方法掌握平行四邊形面積的求法。同時,給學生兩個完全一樣的梯形,提示他們類似的求面積方法,讓學生舉一反三,體會不同圖形,相同的求面積方法。同時還可以適當設計一些表演,如讓兩個同學扮演兩個形狀一樣的梯形或平行四邊形,表演相遇後經過各種嘗試組成一個長方形的經過。小小的活動卻能調動學生創造的積極性,整個表演過程,學生必然情緒高漲,學習積極性也必然得以提升。


四年級數學青島版知識點相關 文章 :

★ 青島版四年級上冊數學第一單元練習題及答案

★ 青島版四年級數學上冊第二單元練習題及答案

★ 青島版四年級上冊數學期末試卷及答案

★ 青島版四年級上冊數學第三次月考試題及答案(2)

★ 青島版小學四年級上冊數學教學計劃

★ 青島版四年級數學上冊第一單元測試卷及答案

★ 青島版四年級下冊數學期末試卷

★ 青島版四年級數學上冊期末測試題

★ 青島版四年級下冊數學練習題

★ 四年級上冊數學單元整理思維導圖

③ 高一數學集合的基本運算知識點

當一個小小的心念變成成為行為時,便能成了習慣;從而形成性格,而性格就決定你一生的成敗。成功與不成功之間有時距離很短——只要後者再向前幾步。我高一頻道為莘莘學子整理了《高 一年級數學 《集合》知識點 總結 》,希望對你有所幫助!


高一數學 集合的基本運算知識點

一.知識歸納:

1.集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示 方法 :常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N

2.子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則AB(或AB);

2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

3)交集:A∩B={∈A且x∈B}

4)並集:A∪B={∈A或x∈B}

5)補集:CUA={A但x∈U}

注意:①?A,若A≠?,則?A;

②若,,則;

③若且,則A=B(等集)

3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。

4.有關子集的幾個等價關系

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、並集運算的性質

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

二.例題講解:

【例1】已知集合M={=m+,m∈Z},N={=,n∈Z},P={=,p∈Z},則M,N,P滿足關系

A)M=NPB)MN=PC)MNPD)NPM

分析一:從判斷元素的共性與區別入手。

解答一:對於集合M:{=,m∈Z};對於集合N:{=,n∈Z}

對於集合P:{=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。

分析二:簡單列舉集合中的元素。

解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。

=∈N,∈N,∴MN,又=M,∴MN,

=P,∴NP又∈N,∴PN,故P=N,所以選B。

點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

變式:設集合,,則(B)

A.M=NB.MNC.NMD.

解:

當時,2k+1是奇數,k+2是整數,選B

【例2】定義集合AB={∈A且xB},若A={1,3,5,7},B={2,3,5},則AB的子集個數為

A)1B)2C)3D)4

分析:確定集合AB子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

解答:∵AB={∈A且xB},∴AB={1,7},有兩個元素,故AB的子集共有22個。選D。

變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為

A)5個B)6個C)7個D)8個

變式2:已知{a,b}A{a,b,c,d,e},求集合A.

解:由已知,集合中必須含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評析本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有個.

【例3】已知集合A={2+px+q=0},B={2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.

∴B={2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A

∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,

∴∴

變式:已知集合A={2+bx+c=0},B={2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.

解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5

∴B={2-5x+6=0}={2,3}∵A∪B=B∴

又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={>-2},且A∩B={x1<>

分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。

解答:A={x-2<><-1或x>1}。由A∩B={x1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。<-1或x>

<><-1或x>

綜合以上各式有B={x-1≤x≤5}

變式1:若A={3+2x2-8x>0},B={2+ax+b≤0},已知A∪B={>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

變式2:設M={2-2x-3=0},N={xax-1=0},若M∩N=N,求所有滿足條件的a的集合。

解答:M={-1,3},∵M∩N=N,∴NM

①當時,ax-1=0無解,∴a=0②

綜①②得:所求集合為{-1,0,}

【例5】已知集合,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

分析:先將原問題轉化為不等式ax2-2x+2>0在有解,再利用參數分離求解。

解答:(1)若,在內有有解

令當時,

所以a>-4,所以a的取值范圍是

變式:若關於x的方程有實根,求實數a的取值范圍。

解答:

點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

三.隨堂演練

選擇題

1.下列八個關系式①{0}=②=0③{}④{}⑤{0}

⑥0⑦{0}⑧{}其中正確的個數

(A)4(B)5(C)6(D)7

2.集合{1,2,3}的真子集共有

(A)5個(B)6個(C)7個(D)8個

3.集合A={x}B={}C={}又則有

(A)(a+b)A(B)(a+b)B(C)(a+b)C(D)(a+b)A、B、C任一個

4.設A、B是全集U的兩個子集,且AB,則下列式子成立的是

(A)CUACUB(B)CUACUB=U

(C)ACUB=(D)CUAB=

5.已知集合A={},B={}則A=

(A)R(B){}

(C){}(D){}

6.下列語句:(1)0與{0}表示同一個集合;(2)由1,2,3組成的集合可表示為

{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示為{1,1,2};(4)集合{}是有限集,正確的是

(A)只有(1)和(4)(B)只有(2)和(3)

(C)只有(2)(D)以上語句都不對

7.設S、T是兩個非空集合,且ST,TS,令X=S那麼S∪X=

(A)X(B)T(C)Φ(D)S

8設一元二次方程ax2+bx+c=0(a<0)的根的判別式,則不等式ax2+bx+c0的解集為

(A)R(B)(C){}(D){}

填空題

9.在直角坐標系中,坐標軸上的點的集合可表示為

10.若A={1,4,x},B={1,x2}且AB=B,則x=

11.若A={x}B={x},全集U=R,則A=

12.若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是

13設集合A={},B={x},且AB,則實數k的取值范圍是。

14.設全集U={x為小於20的非負奇數},若A(CUB)={3,7,15},(CUA)B={13,17,19},又(CUA)(CUB)=,則AB=

解答題

15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若AB={-3},求實數a。

16(12分)設A=,B=,

其中xR,如果AB=B,求實數a的取值范圍。

四.習題答案

選擇題

12345678

CCBCBCDD

填空題

9.{(x,y)}10.0,11.{x,或x3}12.{}13.{}14.{1,5,9,11}

解答題

15.a=-1

16.提示:A={0,-4},又AB=B,所以BA

(Ⅰ)B=時,4(a+1)2-4(a2-1)<0,得a<-1

(Ⅱ)B={0}或B={-4}時,0得a=-1

(Ⅲ)B={0,-4},解得a=1

綜上所述實數a=1或a-1

高一數學集合的基本運算知識點

集合具有某種特定性質的事物的總體。這里的「事物」可以是人,物品,也可以是數學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。3、 口號 等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年—1918年,德國數學家先驅,是集合論的,目前集合論的基本思想已經滲透到現代數學的所有領域。

集合,在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。

集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

元素與集合的關系

元素與集合的關系有「屬於」與「不屬於」兩種。

集合與集合之間的關系

某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。『說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作A?B。中學教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為准。所有男人的集合是所有人的集合的真子集。』

集合的幾種運演算法則

並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}交集:以屬於A且屬於B的元差集表示

素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那麼因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合

1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬於B}。註:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。

集合元素的性質

1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。2.獨立性:集合中的元素的個數、集合本身的個數必須為自然數。3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同於{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。4.無序性:{a,b,c}{c,b,a}是同一個集合。5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x<2},集合A中所有的元素都要符合x<2,這就是集合純粹性。6.完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。

集合有以下性質

若A包含於B,則A∩B=A,A∪B=B

集合的表示方法

集合常用大寫拉丁字母來表示,如:A,B,C…而對於集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當於集合的名字,沒有任何實際的意義。將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括弧括起來的,括弧內部是具有某種共同性質的數學元素。

常用的有列舉法和描述法。1.列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……}2.描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0

4.自然語言常用數集的符號:(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N;不包括0的自然數集合,記作N(2)非負整數集內排除0的集,也稱正整數集,記作Z+;負整數集內也排除0的集,稱負整數集,記作Z-(3)全體整數的集合通常稱作整數集,記作Z(4)全體有理數的集合通常簡稱有理數集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質}(正負有理數集合分別記作Q+Q-)(5)全體實數的集合通常簡稱實數集,記作R(正實數集合記作R+;負實數記作R-)(6)復數集合計作C集合的運算:集合交換律A∩B=B∩AA∪B=B∪A集合結合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合

Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合「容斥原理」在研究集合時,會遇到有關集合中的元素個數問題,我們把有限集合A的元素個數記為card(A)。例如A={a,b,c},則card(A)=3card(A∪B)=card(A)+card(B)-card(A∩B)card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)1885年德國數學家,集合論創始人康托爾談到集合一詞,列舉法和描述法是表示集合的常用方式。集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補律A∪CuA=UA∩CuA=Φ設A為集合,把A的全部子集構成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復數集C實數集R正實數集R+負實數集R-整數集Z正整數集Z+負整數集Z-有理數集Q正有理數集Q+負有理數集Q-不含0的有理數集Q

高一數學集合的基本運算知識點

並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}交集:以屬於A且屬於B的元差集表示

素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那麼因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合

1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬於B}。註:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。

至於 學習方法 的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,這里主要根據教材的特點提出幾點供大家學習時參考。

l、要重視數學概念的理解。高一數學與初中數學的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而y=f(x-l)與y=f(1-x)的圖象卻關於直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。

2、『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。

3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。

4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。


高一數學集合的基本運算知識點相關 文章 :

★ 高一數學集合的基本運算的知識點分析

★ 高一數學集合知識點及例題講解

★ 高一數學集合間的基本關系的知識點(2)

★ 高一數學集合間的基本關系的知識點

★ 高一數學必修一集合的運算知識點

★ 高一數學集合間的基本關系知識點詳解

★ 高一數學集合知識點匯總

★ 高一數學集合知識點及例題分析

★ 高一數學集合知識點歸納和習題

★ 新課標高一數學集合知識點

④ 數學必修三重要知識點匯總

必修三的考試要求不大,主要是基礎題,重點是程序框圖。

第一章 演算法初步

1.1.1 演算法的概念
1、演算法概念:
在數學上,現代意義上的「演算法」通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.
2. 演算法的特點:
(1)有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.
(2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.
(3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對於一個問題可以有不同的演算法.
(5)普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.
1.1.2 程序框圖
1、程序框圖基本概念:
(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規定的圖形、指向線及文字說明來准確、直觀地表示演算法的圖形。
一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明。

(二)構成程序框的圖形符號及其作用
程序框 名稱 功能

起止框 表示一個演算法的起始和結束,是任何流程圖不可少的。

輸入、輸出框 表示一個演算法輸入和輸出的信息,可用在演算法中任何需要輸入、輸出的位置。

處理框 賦值、計算,演算法中處理數據需要的算式、公式等分別寫在不同的用以處理數據的處理框內。

判斷框 判斷某一條件是否成立,成立時在出口處標明「是」或「Y」;不成立時標明「否」或「N」。
學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規則,畫程序框圖的規則如下:
1、使用標準的圖形符號。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。4、判斷框分兩大類,一類判斷框「是」與「否」兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。5、在圖形符號內描述的語言要非常簡練清楚。
(三)、演算法的三種基本邏輯結構:順序結構、條件結構、循環結構。
1、順序結構:順序結構是最簡單的演算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的,它是任何一個演算法都離不開的一種基本演算法結構。
順序結構在程序框圖中的體現就是用流程線將程序框自上而
下地連接起來,按順序執行演算法步驟。如在示意圖中,A框和B
框是依次執行的,只有在執行完A框指定的操作後,才能接著執
行B框所指定的操作。
2、條件結構:
條件結構是指在演算法中通過對條件的判斷
根據條件是否成立而選擇不同流向的演算法結構。
條件P是否成立而選擇執行A框或B框。無論P條件是否成立,只能執行A框或B框之一,不可能同時執行A框和B框,也不可能A框、B框都不執行。一個判斷結構可以有多個判斷框。
3、循環結構:在一些演算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。循環結構又稱重復結構,循環結構可細分為兩類:
(1)、一類是當型循環結構,如下左圖所示,它的功能是當給定的條件P成立時,執行A框,A框執行完畢後,再判斷條件P是否成立,如果仍然成立,再執行A框,如此反復執行A框,直到某一次條件P不成立為止,此時不再執行A框,離開循環結構。
(2)、另一類是直到型循環結構,如下右圖所示,它的功能是先執行,然後判斷給定的條件P是否成立,如果P仍然不成立,則繼續執行A框,直到某一次給定的條件P成立為止,此時不再執行A框,離開循環結構。

當型循環結構 直到型循環結構
注意:1循環結構要在某個條件下終止循環,這就需要條件結構來判斷。因此,循環結構中一定包含條件結構,但不允許「死循環」。2在循環結構中都有一個計數變數和累加變數。計數變數用於記錄循環次數,累加變數用於輸出結果。計數變數和累加變數一般是同步執行的,累加一次,計數一次。
1.2.1 輸入、輸出語句和賦值語句
1、輸入語句
(1)輸入語句的一般格式
(2)輸入語句的作用是實現演算法的輸入信息功能;(3)「提示內容」提示用戶輸入什麼樣的信息,變數是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數,不能是函數、變數或表達式;(5)提示內容與變數之間用分號「;」隔開,若輸入多個變數,變數與變數之間用逗號「,」隔開。
2、輸出語句
(1)輸出語句的一般格式
(2)輸出語句的作用是實現演算法的輸出結果功能;(3)「提示內容」提示用戶輸入什麼樣的信息,表達式是指程序要輸出的數據;(4)輸出語句可以輸出常量、變數或表達式的值以及字元。
3、賦值語句
(1)賦值語句的一般格式

(2)賦值語句的作用是將表達式所代表的值賦給變數;(3)賦值語句中的「=」稱作賦值號,與數學中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變數;(4)賦值語句左邊只能是變數名字,而不是表達式,右邊表達式可以是一個數據、常量或算式;(5)對於一個變數可以多次賦值。
注意:①賦值號左邊只能是變數名字,而不能是表達式。如:2=X是錯誤的。②賦值號左右不能對換。如「A=B」「B=A」的含義運行結果是不同的。③不能利用賦值語句進行代數式的演算。(如化簡、因式分解、解方程等)④賦值號「=」與數學中的等號意義不同。

1.2.2條件語句
1、條件語句的一般格式有兩種:(1)IF—THEN—ELSE語句;(2)IF—THEN語句。2、IF—THEN—ELSE語句
IF—THEN—ELSE語句的一般格式為圖1,對應的程序框圖為圖2。

圖1 圖2
分析:在IF—THEN—ELSE語句中,「條件」表示判斷的條件,「語句1」表示滿足條件時執行的操作內容;「語句2」表示不滿足條件時執行的操作內容;END IF表示條件語句的結束。計算機在執行時,首先對IF後的條件進行判斷,如果條件符合,則執行THEN後面的語句1;若條件不符合,則執行ELSE後面的語句2。
3、IF—THEN語句
IF—THEN語句的一般格式為圖3,對應的程序框圖為圖4。

注意:「條件」表示判斷的條件;「語句」表示滿足條件時執行的操作內容,條件不滿足時,結束程序;END IF表示條件語句的結束。計算機在執行時首先對IF後的條件進行判斷,如果條件符合就執行THEN後邊的語句,若條件不符合則直接結束該條件語句,轉而執行其它語句。

1.2.3循環語句

循環結構是由循環語句來實現的。對應於程序框圖中的兩種循環結構,一般程序設計語言中也有當型(WHILE型)和直到型(UNTIL型)兩種語句結構。即WHILE語句和UNTIL語句。
1、WHILE語句
(1)WHILE語句的一般格式是 對應的程序框圖是

(2)當計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執行WHILE與WEND之間的循環體;然後再檢查上述條件,如果條件仍符合,再次執行循環體,這個過程反復進行,直到某一次條件不符合為止。這時,計算機將不執行循環體,直接跳到WEND語句後,接著執行WEND之後的語句。因此,當型循環有時也稱為「前測試型」循環。
2、UNTIL語句
(1)UNTIL語句的一般格式是 對應的程序框圖是

(2)直到型循環又稱為「後測試型」循環,從UNTIL型循環結構分析,計算機執行該語句時,先執行一次循環體,然後進行條件的判斷,如果條件不滿足,繼續返回執行循環體,然後再進行條件的判斷,這個過程反復進行,直到某一次條件滿足時,不再執行循環體,跳到LOOP UNTIL語句後執行其他語句,是先執行循環體後進行條件判斷的循環語句。
分析:當型循環與直到型循環的區別:(先由學生討論再歸納)
(1) 當型循環先判斷後執行,直到型循環先執行後判斷;
在WHILE語句中,是當條件滿足時執行循環體,在UNTIL語句中,是當條件不滿足時執行循環

1.3.1輾轉相除法與更相減損術

1、輾轉相除法。也叫歐幾里德演算法,用輾轉相除法求最大公約數的步驟如下:
(1):用較大的數m除以較小的數n得到一個商 和一個余數 ;(2):若 =0,則n為m,n的最大公約數;若 ≠0,則用除數n除以余數 得到一個商 和一個余數 ;(3):若 =0,則 為m,n的最大公約數;若 ≠0,則用除數 除以余數 得到一個商 和一個余數 ;…… 依次計算直至 =0,此時所得到的 即為所求的最大公約數。
2、更相減損術
我國早期也有求最大公約數問題的演算法,就是更相減損術。在《九章算術》中有更相減損術求最大公約數的步驟:可半者半之,不可半者,副置分母•子之數,以少減多,更相減損,求其等也,以等數約之。
翻譯為:(1):任意給出兩個正數;判斷它們是否都是偶數。若是,用2約簡;若不是,執行第二步。(2):以較大的數減去較小的數,接著把較小的數與所得的差比較,並以大數減小數。繼續這個操作,直到所得的數相等為止,則這個數(等數)就是所求的最大公約數。
例2 用更相減損術求98與63的最大公約數.
分析:(略)
3、輾轉相除法與更相減損術的區別:
(1)都是求最大公約數的方法,計算上輾轉相除法以除法為主,更相減損術以減法為主,計算次數上輾轉相除法計算次數相對較少,特別當兩個數字大小區別較大時計算次數的區別較明顯。
(2)從結果體現形式來看,輾轉相除法體現結果是以相除余數為0則得到,而更相減損術則以減數與差相等而得到

1.3.2秦九韶演算法與排序
1、秦九韶演算法概念:
f(x)=anxn+an-1xn-1+….+a1x+a0求值問題
f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0
=......=(...( anx+an-1)x+an-2)x+...+a1)x+a0
求多項式的值時,首先計算最內層括弧內依次多項式的值,即v1=anx+an-1
然後由內向外逐層計算一次多項式的值,即
v2=v1x+an-2 v3=v2x+an-3 ...... vn=vn-1x+a0
這樣,把n次多項式的求值問題轉化成求n個一次多項式的值的問題。
2、兩種排序方法:直接插入排序和冒泡排序
1、直接插入排序
基本思想:插入排序的思想就是讀一個,排一個。將第1個數放入數組的第1個元素中,以後讀入的數與已存入數組的數進行比較,確定它在從大到小的排列中應處的位置.將該位置以及以後的元素向後推移一個位置,將讀入的新數填入空出的位置中.(由於演算法簡單,可以舉例說明)
2、冒泡排序
基本思想:依次比較相鄰的兩個數,把大的放前面,小的放後面.即首先比較第1個數和第2個數,大數放前,小數放後.然後比較第2個數和第3個數......直到比較最後兩個數.第一趟結束,最小的一定沉到最後.重復上過程,仍從第1個數開始,到最後第2個數...... 由於在排序過程中總是大數往前,小數往後,相當氣泡上升,所以叫冒泡排序.

1.3.3進位制
1、概念:進位制是一種記數方式,用有限的數字在不同的位置表示不同的數值。可使用數字元號的個數稱為基數,基數為n,即可稱n進位制,簡稱n進制。現在最常用的是十進制,通常使用10個阿拉伯數字0-9進行記數。對於任何一個數,我們可以用不同的進位制來表示。比如:十進數57,可以用二進製表示為111001,也可以用八進製表示為71、用十六進製表示為39,它們所代表的數值都是一樣的。
一般地,若k是一個大於一的整數,那麼以k為基數的k進制可以表示為:

而表示各種進位制數一般在數字右下腳加註來表示,如111001(2)表示二進制數,34(5)表示5進制數
第二章 統計
2.1.1簡單隨機抽樣

1.總體和樣本
在統計學中 , 把研究對象的全體叫做總體.
把每個研究對象叫做個體.
把總體中個體的總數叫做總體容量.
為了研究總體 的有關性質,一般從總體中隨機抽取一部分: , , ,
研究,我們稱它為樣本.其中個體的個數稱為樣本容量.
2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才採用這種方法。
3.簡單隨機抽樣常用的方法:
(1)抽簽法;⑵隨機數表法;⑶計算機模擬法;⑷使用統計軟體直接抽取。
在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
4.抽簽法:
(1)給調查對象群體中的每一個對象編號;
(2)准備抽簽的工具,實施抽簽
(3)對樣本中的每一個個體進行測量或調查
例:請調查你所在的學校的學生做喜歡的體育活動情況。
5.隨機數表法:
例:利用隨機數表在所在的班級中抽取10位同學參加某項活動。

2.1.2系統抽樣

1.系統抽樣(等距抽樣或機械抽樣):
把總體的單位進行排序,再計算出抽樣距離,然後按照這一固定的抽樣距離抽取樣本。第一個樣本採用簡單隨機抽樣的辦法抽取。
K(抽樣距離)=N(總體規模)/n(樣本規模)
前提條件:總體中個體的排列對於研究的變數來說,應是隨機的,即不存在某種與研究變數相關的規則分布。可以在調查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環性規律,且這種循環和抽樣距離重合。
2.系統抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調查指標相關的輔助變數可供使用,總體單元按輔助變數的大小順序排隊的話,使用系統抽樣可以大大提高估計精度。

2.1.3分層抽樣

1.分層抽樣(類型抽樣):
先將總體中的所有單位按照某種特徵或標志(性別、年齡等)劃分成若干類型或層次,然後再在各個類型或層次中採用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最後,將這些子樣本合起來構成總體的樣本。
兩種方法:
1.先以分層變數將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變數將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最後用系統抽樣的方法抽取樣本。

2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標准:
(1)以調查所要分析和研究的主要變數或相關的變數作為分層的標准。
(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變數作為分層變數。
(3)以那些有明顯分層區分的變數作為分層變數。
3.分層的比例問題:
(1)按比例分層抽樣:根據各種類型或層次中的單位數目占總體單位數目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時採用該方法,主要是便於對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數據資料進行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實際的比例結構。

2.2.2用樣本的數字特徵估計總體的數字特徵

1、本均值:
2、.樣本標准差:
3.用樣本估計總體時,如果抽樣的方法比較合理,那麼樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數據得到的分布、均值和標准差並不是總體的真正的分布、均值和標准差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。
4.(1)如果把一組數據中的每一個數據都加上或減去同一個共同的常數,標准差不變
(2)如果把一組數據中的每一個數據乘以一個共同的常數k,標准差變為原來的k倍
(3)一組數據中的最大值和最小值對標准差的影響,區間 的應用;
「去掉一個最高分,去掉一個最低分」中的科學道理
2.3.2兩個變數的線性相關

1、概念:
(1)回歸直線方程
(2)回歸系數
2.最小二乘法
3.直線回歸方程的應用
(1)描述兩變數之間的依存關系;利用直線回歸方程即可定量描述兩個變數間依存的數量關系
(2)利用回歸方程進行預測;把預報因子(即自變數x)代入回歸方程對預報量(即因變數Y)進行估計,即可得到個體Y值的容許區間。
(3)利用回歸方程進行統計控制規定Y值的變化,通過控制x的范圍來實現統計控制的目標。如已經得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。
4.應用直線回歸的注意事項
(1)做回歸分析要有實際意義;
(2)回歸分析前,最好先作出散點圖;
(3)回歸直線不要外延。

第三章 概 率

3.1.1 —3.1.2隨機事件的概率及概率的意義

1、基本概念:
(1)必然事件:在條件S下,一定會發生的事件,叫相對於條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發生的事件,叫相對於條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統稱為相對於條件S的確定事件;
(4)隨機事件:在條件S下可能發生也可能不發生的事件,叫相對於條件S的隨機事件;
(5)頻數與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA為事件A出現的頻數;稱事件A出現的比例fn(A)= 為事件A出現的概率:對於給定的隨機事件A,如果隨著試驗次數的增加,事件A發生的頻率fn(A)穩定在某個常數上,把這個常數記作P(A),稱為事件A的概率。
(6)頻率與概率的區別與聯系:隨機事件的頻率,指此事件發生的次數nA與試驗總次數n的比值 ,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率

3.1.3 概率的基本性質

1、基本概念:
(1)事件的包含、並事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那麼稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那麼稱事件A與事件B互為對立事件;
(4)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,於是有P(A)=1—P(B)
2、概率的基本性質:
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,於是有P(A)=1—P(B);
4)互斥事件與對立事件的區別與聯系,互斥事件是指事件A與事件B在一次試驗中不會同時發生,其具體包括三種不同的情形:(1)事件A發生且事件B不發生;(2)事件A不發生且事件B發生;(3)事件A與事件B同時不發生,而對立事件是指事件A 與事件B有且僅有一個發生,其包括兩種情形;(1)事件A發生B不發生;(2)事件B發生事件A不發生,對立事件互斥事件的特殊情形。
3.2.1 —3.2.2古典概型及隨機數的產生

1、(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數;
②求出事件A所包含的基本事件數,然後利用公式P(A)=

3.3.1—3.3.2幾何概型及均勻隨機數的產生

1、基本概念:
(1)幾何概率模型:如果每個事件發生的概率只與構成該事件區域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)= ;
(3)幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等.

⑤ 二年級數學知識點手抄報

趣味數學知識

1、 兩個男孩各騎一輛自行車,從相距2o英里(1英里合1.6093千米)的兩個地方,開始沿直線相向騎行。在他們起步的那一瞬間,一輛自行車車把上的一隻蒼蠅,開始向另一輛自行車徑直飛去。它一到達另一輛自行車車把,就立即轉嚮往回飛行。這只蒼蠅如此往返,在兩輛自行車的車把之間來回飛行,直到兩輛自行車相遇為止。如果每輛自行車都以每小時1o英里的等速前進,蒼蠅以每小時15英里的等速飛行,那麼,蒼蠅總共飛行了多少英里?

答案

每輛自行車運動的速度是每小時10英里,兩者將在1小時後相遇於2o英里距離的中點。蒼蠅飛行的速度是每小時15英里,因此在1小時中,它總共飛行了15英里。

許多人試圖用復雜的方法求解這道題目。他們計算蒼蠅在兩輛自行車車把之間的第一次路程,然後是返回的路程,依此類推,算出那些越來越短的路程。但這將涉及所謂無窮級數求和,這是非常復雜的高等數學。據說,在一次雞尾酒會上,有人向約翰·馮·諾伊曼(john von neumann, 1903~1957,20世紀最偉大的數學家之一。)提出這個問題,他思索片刻便給出正確答案。提問者顯得有點沮喪,他解釋說,絕大多數數學家總是忽略能解決這個問題的簡單方法,而去採用無窮級數求和的復雜方法。

馮·諾伊曼臉上露出驚奇的神色。「可是,我用的是無窮級數求和的方法.」他解釋道。