當前位置:首頁 » 基礎知識 » 上初中考試必備的數學知識
擴展閱讀
ksp是什麼基礎化學 2024-11-23 12:13:48
零基礎如何快速學會簡譜 2024-11-23 12:11:55

上初中考試必備的數學知識

發布時間: 2024-11-03 06:22:31

1. 初中數學學好要掌握哪些基礎知識

有理數
整式的加減
一元一次方程
圖形初步認識
相交線與平行線
平面直角坐標系
三角形
二元一次方程
不等式與不等式組
數據的收集、整理與描述
全等三角形
軸對稱
實數
一次函數
整式的乘除與因式分解
分式
反比例函數
勾股弦定理
四邊形
數據的分析
二次根式
一元二次方程
旋轉

概率初步
二次函數
相似
銳角三角函數
投影與視圖

2. 初中數學知識點全總結歸納

初中數學的知識點比較多,也比較雜,但是需要初中生扎實掌握,我整理了一些比較重要的知識點。

有理數

1、有理數:有理數分為正有理數、0、負有理數;

2、數軸:數軸是規定了原點、正方向、單位長度的一條直線。

3、相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0a+b=0a、b互為相反數。

4、絕對值:正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離。

5、科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。

6、單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式。

(1)單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。

7、多項式:幾個單項式的和叫多項式。

(1)多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

一元一次方程

1、只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2、一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

3、一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)

相交線與平行線

1、線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

2、平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

3、平行線的性質:

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

4、平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內錯角相等,兩直線平行。

判定3:同旁內角相等,兩直線平行。

不等式

1、不等式的解:使不等式成立的未知數的值,叫做不等式的解。

2、不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

3、一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

4、一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組

全等三角形

1、兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。

2、全等三角形的性質:全等三角形的對應角相等、對應邊相等。

3、三角形全等的判定公理及推論有:

(1)「邊角邊」簡稱「SAS」

(2)「角邊角」簡稱「ASA」

(3)「邊邊邊」簡稱「SSS」

(4)「角角邊」簡稱「AAS」

(5)斜邊和直角邊相等的兩直角三角形(HL)

分式

1、形如A/B,A、B是整式,B中含有未知數且B不等於0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

2、分式有意義的條件:分母不等於0。

3、約分:把一個分式的分子和分母的公因式(不為1的數)約去,這種變形稱為約分。

4、通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。

以上是我整理的比較重要的知識點,希望能幫到你。

3. 初中數學知識點歸納

數學呢,是一個研究數量,結構變化和空間模型等等的含義的一種科學方式,它是物理化學等科目的基礎.而且和我們的日常生活有著很大的關聯,所以說,學好數學對於我們每個人來說都是非常重要的.下面就向大家來介紹一下怎麼學習初中數學吧!

學習數學還必要的,因為數學是從幼兒園開始就接觸的科目,如果說不會數學,那不是太丟人了嗎?以下就是關於怎麼學習初中數學的技巧:

積極做題

二:考試時的技巧

如果你是想得高分的話,你需要在選擇填空,還有計算題上是絕對不能丟分兒的,所以這需要你謹慎的做題.如果是一開始不知道一道題該怎麼做,但是後來突然明白的那一種,千萬要冷靜,不能瞎寫,要先在草稿紙上寫一遍,最後再放在答題紙上.

以上就是關於怎麼學習初中數學的一些技巧.希望大家是可以理解的.其實學習數學並不難,重要的是要多做題.並且了解題型的技巧.

4. 初中數學知識大全

初中數學知識大全知識點1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數項是-2.
2.一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2. 3.一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7. 4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識點2:直角坐標系與點的位置
1.直角坐標系中,點A(3,0)在y軸上。 2.直角坐標系中,x軸上的任意點的橫坐標為0. 3.直角坐標系中,點A(1,1)在第一象限. 4.直角坐標系中,點A(-2,3)在第四象限. 5.直角坐標系中,點A(-2,1)在第二象限.
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=32x的值為1. 2.當x=3時,函數y=2
1x的值為1.
3.當x=-1時,函數y=3
21x的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數. 2.函數y=4x+1是正比例函數. 3.函數xy2
1是反比例函數. 4.拋物線y=-3(x-2)2-5的開口向下. 5.拋物線y=4(x-3)2-10的對稱軸是x=3. 6.拋物線2)1(2
12xy的頂點坐標是(1,2).
7.反比例函數x
y2

的圖象在第一、三象限. 知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10. 2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3.
知識點6:特殊三角函數值
1.cos30°=
2
3. 2.sin260°+ cos260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.
5.cos60°+ sin30°= 1.

2
知識點7:圓的基本性質
1.半圓或直徑所對的圓周角是直角. 2.任意一個三角形一定有一個外接圓.
3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓. 4.在同圓或等圓中,相等的圓心角所對的弧相等. 5.同弧所對的圓周角等於圓心角的一半. 6.同圓或等圓的半徑相等. 7.過三個點一定可以作一個圓. 8.長度相等的兩條弧是等弧.
9.在同圓或等圓中,相等的圓心角所對的弧相等. 10.經過圓心平分弦的直徑垂直於弦。
知識點8:直線與圓的位置關系
1.直線與圓有唯一公共點時,叫做直線與圓相切. 2.三角形的外接圓的圓心叫做三角形的外心. 3.弦切角等於所夾的弧所對的圓心角.
4.三角形的內切圓的圓心叫做三角形的內心. 5.垂直於半徑的直線必為圓的切線.
6.過半徑的外端點並且垂直於半徑的直線是圓的切線. 7.垂直於半徑的直線是圓的切線. 8.圓的切線垂直於過切點的半徑.
知識點9:圓與圓的位置關系
1.兩個圓有且只有一個公共點時,叫做這兩個圓外切. 2.相交兩圓的連心線垂直平分公共弦.
3.兩個圓有兩個公共點時,叫做這兩個圓相交. 4.兩個圓內切時,這兩個圓的公切線只有一條. 5.相切兩圓的連心線必過切點.
知識點10:正多邊形基本性質
1.正六邊形的中心角為60°. 2.矩形是正多邊形.
3.正多邊形都是軸對稱圖形. 4.正多邊形都是中心對稱圖形
http://wenku..com/link?url=--01C9SsdOSENF6gyASQ5lzgXTGvu_xir8R8sm 這裡面有你要的

5. 初中數學考試重點知識歸納整理

其實要學好初中數學並不難,而且初中的知識掌握起來比高中容易多了。想要學好數學的話就要對所學知識點進行一個總結歸納,這樣才能加深知識點的記憶。
初中數學考試重點知識
專題一 數與式

考點1.1、實數的概念及分類

1、 實數的分類

有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環循小數)都是有理數.如:-3,,0.231,0.737373...,,.

無理數:無限不環循小數叫做無理數如:π,-,0.1010010001...(兩個1之間依次多1個0).

實數:有理數和無理數統稱為實數.

2、無理數

在理解無理數時,要抓住"無限不循環"這一時之,它包含兩層意思:一是無限小數;二是不循環.二者缺一不可.歸納起來有四類:

(1)開方開不盡的數,如等;

(2)有特定意義的數,如圓周率π,或化簡後含有π的數,如+8等;

(3)有特定結構的數,如0.1010010001...等;

(4)某些三角函數,如sin60o等

注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標准.

3、非負數:正實數與零的統稱。(表為:x≥0)

常見的非負數有:

性質:若干個非負數的和為0,則每個非負擔數均為0。

4、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。

解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸("三要素")

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。

作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

5、相反數

實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關於原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。即:(1)實數的相反數是.(2)和互為相反數.

6、絕對值

一個數的絕對值就是表示這個數的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。正數大於零,負數小於零,正數大於一切負數,兩個負數,絕對值大的反而小。

(1)一個正實數的絕對值是它本身;一個負實數的絕對值是它的相反數;0的絕對值是0.即:﹝另有兩種寫法﹞

(2)實數的絕對值是一個非負數,從數軸上看,一個實數的絕對值就是數軸上表示這個數的點到原點的距離.

☆(3)幾個非負數的和等於零則每個非負數都等於零,例如:若,則,,.

注意:│a│≥0,符號"││"是"非負數"的標志;數a的絕對值只有一個;處理任何類型的題目,只要其中有"││"出現,其關鍵一步是去掉"││"符號。

7、倒數

如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。

即(1)實數(≠0)的倒數是.

(2)和互為倒數。

(3)注意0沒有倒數.

8、有效數字

一個近似數四捨五入到哪一位,就說它精確到哪一位,這時,從左邊第一個不是零的數字起到右邊精確的數位止的所有數字,都叫做這個數的有效數字。

9、科學記數法

把一個數寫做的形式,其中,n是整數,這種記數法叫做科學記數法。

(1)確定:是只有一位整數數位的數.

(2)確定n:當原數≥1時,等於原數的整數位數減1;;當原數<1時,是負整數,它的絕對值等於原數中左起第一個非零數字前零的個數(含整數位上的零)。

例如:-40700=-4.07×105,0.000043=4.3×10ˉ5.

(3).近似值的精確度:一般地,一個近似數,四捨五入到哪一位,就說這個近似數精確到哪一位

(4)按精確度或有效數字取近似值,一定要與科學計數法有機結合起來.

10、實數大小的比較

知識1、數軸

規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。

解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。

知識2、實數大小比較的幾種常用方法

(1)數軸比較:在數軸上表示的兩個數,右邊的數總比左邊的數大。

(2)求差比較:設a、b是實數,

(3)求商比較法:設a、b是兩正實數,

(4)絕對值比較法:設a、b是兩負實數,則。

(5)平方法:設a、b是兩負實數,則。

11、實數的運算 (做題的基礎,分值相當大)

1、加法交換律

2、加法結合律

3、乘法交換律

4、乘法結合律

5、乘法對加法的分配律

6、實數的運算順序

1. 先算乘方開方,再算乘除,最後算加減,如果有括弧,就先算括弧裡面的。

2. (同級運算)從"左"到"右"(如5÷×5);(有括弧時)由"小"到"中"到"大"。

12、有理數的運算:

加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

減法:減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

考點1.2、實數與二次根式

1、平方根

如果一個數的平方等於a,那麼這個數就叫做a的平方根(或二次方跟)。

一個正數有兩個平方根,他們互為相反數;零的平方根是零;負數沒有平方根。

正數a的平方根記做""。

2、算術平方根

正數a的正的平方根叫做a的算術平方根,記作""。

正數和零的算術平方根都只有一個,零的算術平方根是零。

;注意的雙重非負性:

-(<0) 0

注意:算術平方根與絕對值

① 聯系:都是非負數,=│a│

②區別:│a│中,a為一切實數;中,a為非負數。

3、算術平方根的估算方法:兩端逼近法.

例如:估算.(精確到0.1)∵∴.又∵,

又∵6更靠近5.76,∴4、立方根

如果一個數的立方等於a,那麼這個數就叫做a 的立方根(或a 的三次方根)。

一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零。

注意:,這說明三次根號內的負號可以移到根號外面。

二次根式

5、二次根式

式子叫做二次根式,二次根式必須滿足:含有二次根號"";被開方數a必須是非負數。

6、最簡二次根式

若二次根式滿足:被開方數的因數是整數,因式是整式;被開方數中不含能開得盡方的因數或因式,這樣的二次根式叫做最簡二次根式。

化二次根式為最簡二次根式的方法和步驟:

(1)如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然後利用分母有理化進行化簡。

(2)如果被開方數是整數或整式,先將他們分解因數或因式,然後把能開得盡方的因數或因式開出來。

7、同類二次根式

幾個二次根式化成最簡二次根式以後,如果被開方數相同,這幾個二次根式叫做同類二次根式。

8、二次根式的性質

9、根式運演算法則:

⑴加法法則(合並同類二次根式);

⑵乘、除法法則;

⑶分母有理化:A.;B.;C..

10.指數

⑴ (-冪,乘方運算)

① a>0時,>0;②a<0時,>0(n是偶數),<0(n是奇數)

⑵零指數:=1(a≠0)

負整指數:=1/(a≠0,p是正整數)

11、二次根式混合運算

二次根式的混合運算與實數中的運算順序一樣,先乘方,再乘除,最後加減,有括弧的先算括弧里的(或先去括弧)。

考點1.3、代數式與整式

1、代數式

用運算符號把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。

表示方根的代數式叫做根式。

含有關於字母開方運算的代數式叫做無理式。注意:①從外形上判斷;②區別:、是根式,但不是無理式(是無理數)。

2、單項式

只含有數字與字母的積的代數式叫做單項式。

注意:單項式是由系數、字母、字母的指數構成的,其中系數不能用帶分數表示,如,這種表示就是錯誤的,應寫成。一個單項式中,所有字母的指數的和叫做這個單項式的次數。如是6次單項式。

注意:系數與指數:區別與聯系:①從位置上看;②從表示的意義上看

其含義有:

①不含有加、減運算符號.

②字母不出現在分母里.

③單獨的一個數或者字母也是單項式.

④不含"符號".多項式3、多項式

幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個多項式的次數。

單項式和多項式統稱整式。

用數值代替代數式中的字母,按照代數式指明的運算,計算出結果,叫做代數式的值。

注意:(1)求代數式的值,一般是先將代數式化簡,然後再將字母的取值代入。

(2)求代數式的值,有時求不出其字母的值,需要利用技巧,"整體"代入。

4、同類項

所有字母相同,並且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。

條件:①字母相同;②相同字母的指數相同

合並依據:乘法分配律

5、去括弧法則

(1)括弧前是"+",把括弧和它前面的"+"號一起去掉,括弧里各項都不變號。

(2)括弧前是"﹣",把括弧和它前面的"﹣"號一起去掉,括弧里各項都變號。

6、整式的運演算法則

整式的加減法:(1)去括弧;(2)合並同類項。

注意:(1)單項式乘單項式的結果仍然是單項式。

(2)單項式與多項式相乘,結果是一個多項式,其項數與因式中多項式的項數相同。

(3)計算時要注意符號問題,多項式的每一項都包括它前面的符號,同時還要注意單項式的符號。

(4)多項式與多項式相乘的展開式中,有同類項的要合並同類項。

(5)公式中的字母可以表示數,也可以表示單項式或多項式。(6)(7)多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加,單項式除以多項式是不能這么計算的。
初中數學學習方法
一:平時的數學學習:

○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.

○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則“千里之堤,毀於蟻穴”.

○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.

○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到“課後復習”.

二:期中期末數學復習:

要將平時的單元檢測卷訂成冊,並且將錯題再做一遍.如果整張試卷考得都不好,那麼可以復印將試卷重做一遍.除試卷外,還可以將作業上的錯題、難題、易錯題重做一遍.另外,自己還可以做2-3張期末模擬卷.

三:數學考試技巧:

如果想得高分,在選擇、填空、計算題上是不能丟分的.在考數學的時候思想不能開小差,而且遇到難題時不能想“沒考好怎麼辦啊”等內容.在通常情況下,期末考試的難題都是不知道怎麼做,但有可能突然明白的那種.遇到這種題目要沉著冷靜,利用題目給你的一切條件進行分析,如這次考試有兩個空白的鍾,還有去年七年級期末的幾題填空.這些條件都對你的解題有很大幫助.在期中、期末考試中有充足的時間,將自己的速度壓下來,不是越快越好,爭取一次做成功.大概留35分鍾的時間檢查.

最終提醒大家:多做題有一定作用,但上課聽講、認真答題及提高准確率、總結經驗才是最重要的.還要將所學的知識用到生活中去,做到學以致用.當你運用數學知識解決了生活中實際問題的時候,你就會感受到學習數學的快樂.
初中數學學習技巧
其實要學好數學並不難,而且初中的知識掌握起來比高中容易多了。上課必須聽講,不管你多麼厲害,上課不聽講就不行,因為老師有時候是會講一些書本上沒有的知識或者是他們自己的經驗技巧。

課後作業必須做,也不要求你再去自己買題來做,你只需要認認真真的完成老師布置的作業就行。你需要聽老師評講作業,不管你是對的還是錯的,都要聽,老師就是在這個時候講方法,所以說上課的專心最重要。

考試卷子也是一樣,不要因為你是對的就不聽講了,老師講的有時候不僅僅是那道題。

最重要的就是上面那幾點,只要你做到了,你的成績絕對不會差!最後就是多與同學交流,互相印證答題技巧,不懂多問。

猜你喜歡:

1. 中考數學知識點總結

2. 初中數學基礎知識點總結

3. 初中數學知識點歸納

4. 初中數學基礎知識點總結

5. 初中數學知識要點口訣總匯

6. 初中七年級數學知識點歸納整理

數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中 七年級數學 知識點歸納,供大家閱讀參考。

初中七年級數學知識點歸納

第一章 相交線與平行線

一、知識框架

二、知識概念

1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

4.平行線:在同一平面內,不相交的兩條直線叫做平行線。

5.同位角、內錯角、同旁內角:

同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

內錯角:∠2與∠6像這樣的一對角叫做內錯角。

同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。

6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

8.對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。

9.定理與性質

對頂角的性質:對頂角相等。

10垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

11.平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

12.平行線的性質:

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內錯角相等,兩直線平行。

判定3:同旁內角相等,兩直線平行。

本章使學生了解在平面內不重合的兩條直線相交與平行的兩種位置關系,研究了兩條直線相交時的形成的角的特徵,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特徵以及有關圖形平移變換的性質,利用平移設計一些優美的圖案. 重點:垂線和它的性質,平行線的判定 方法 和它的性質,平移和它的性質,以及這些的組織運用. 難點:探索平行線的條件和特徵,平行線條件與特徵的區別,運用平移性質探索圖形之間的平移關系,以及進行圖案設計。

第二章 平面直角坐標系

一.知識框架

二.知識概念

1.有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)

2.平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4.坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。

5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

平面直角坐標系是數軸由一維到二維的過渡,同時它又是學習函數的基礎,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數結合起來,體現了數形結合的思想。掌握本節內容對以後學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發,通過對平面上的點的位置確定發展學生創新能力和應用意識。

第三章 三角形

一.知識框架

二.知識概念

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

12.公式與性質

三角形的內角和:三角形的內角和為180°

三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

多邊形的外角和:多邊形的內角和為360°。

多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

(2)n邊形共有 條對角線。

三角形是初中數學中幾何部分的基礎圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發現和探索其中的知識奧秘。注重培養學生正確的數學情操和幾何思維能力。

第四章 二元一次方程組

一.知識結構圖

二、知識概念

1.二元一次方程:含有兩個未知數,並且未知數的指數都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。

3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。

4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。

5.消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想。

6.代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。

7.加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法。

本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養學生對概念的理解和完整性和深刻性,使學生掌握好二元一次方程組的兩種解法. 重點:二元一次方程組的解法,列二元一次方程組解決實際問題. 難點:二元一次方程組解決實際問題

第五章 不等式與不等式組

一.知識框架

二、知識概念

1.用符號「<」「>」「≤ 」「≥」表示大小關系的式子叫做不等式。

2.不等式的解:使不等式成立的未知數的值,叫做不等式的解。

3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

5.一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。

7.定理與性質

不等式的性質:

不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。

不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。

不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。

本章內容要求學生經歷建立一元一次不等式(組)這樣的數學模型並應用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創新精神和應用數學的意識。

第六章 數據的收集、整理與描述

一.知識框架

全面調查

抽樣調查

收集數據

描述數據

整理數據

分析數據

得出結論

二.知識概念

1.全面調查:考察全體對象的調查方式叫做全面調查。

2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查。

3.總體:要考察的全體對象稱為總體。

4.個體:組成總體的每一個考察對象稱為個體。

5.樣本:被抽取的所有個體組成一個樣本。

6.樣本容量:樣本中個體的數目稱為樣本容量。

7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。

8.頻率:頻數與數據總數的比為頻率。

9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。

本章要求通過實際參與收集、整理、描述和分析數據的活動,經歷統計的一般過程,感受統計在生活和生產中的作用,增強學習統計的興趣,初步建立統計的觀念,培養重視調查研究的良好習慣和科學態度。

數學考試拿高分的竅門

一、對照法

如何正確理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

二、公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

三、比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

四、分類法

根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。 分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。

怎樣才能學好數學

1.打破沙鍋問到底的執著和溫故知新的毅力,被某個知識點或者某道題難住,就把它擱置,問題越來越多就積重難返了。

2.不會的問題當即解決最好,解決的方法有查資料或者請教他人等;對已經解決的問題和重要知識點,要定期復習,復習時要思考有無更好的方法。

3.學會一題多解,從各個方面來了解題目的含義,鍛煉孩子的變式思維;要敢於創新,老師可在講課過程中故意出錯,讓學生來思考,矯正,使學生處於主動思考的狀態。


初中七年級數學知識點歸納整理相關 文章 :

★ 初一數學知識點梳理歸納

★ 七年級數學知識點整理大全

★ 初一數學的知識點梳理

★ 初一數學知識點歸納梳理

★ 初一數學學習方法總結

★ 初一數學的知識點歸納

★ 初一數學考試知識點總結

★ 數學七年級下冊知識點總結之變數之間的關系

★ 七年級數學上冊知識點總結歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();