❶ 初三數學知識點歸納 九年級數學重點知識總結
很多人想知道初三數學上有哪些重要知識點,初三必背重點知識有哪些呢?下面我為大家介紹一下!
初三數學重要知識點歸納大全
一、 圓的對稱性
1、圓的軸對稱性
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
二、 弧、弦、弦心距、圓心角之間的關系定理
1、圓心角
頂點在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦型顫心距中有一組量相等,拿租和那麼它們所對應的其餘各組量都分別相等。
三、圓周角定理及其推論
1、圓周角
頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等於它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
四、點和圓的位置關系
設⊙O的半徑是r,點P到圓心O的距離為d,則有:
d=r 點P在⊙O上;
d>r 點P在⊙O外。
過三點的圓
1、過三點的圓
不在同一直線上消盯的三個點確定一個圓。
2、三角形的外接圓
經過三角形的三個頂點的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4、圓內接四邊形性質(四點共圓的判定條件)
圓內接四邊形對角互補。
五、一些基本公式
三倍角公式
三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推導
附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
六、一些重點知識
巧記三角函數定義:初中所學的三角函數有正弦、餘弦、正切、餘切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:餘弦或餘弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數的增減性:正增余減特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣"123,321,三九二十七"既可。
平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分"跑不了",對角相等也有用,"兩組對角"才能成。
梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在"△"現;延長兩腰交一點,"△"中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎麼添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。
圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉比例,兩端各自找聯系。
正多邊形訣竅歌:份相等分割圓,n值必須大於三,依次連接各分點,內接正n邊形在眼前。
中考數學必考重要知識點大全
知識點1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數項是-2.
2.一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2.
3.一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識點2:直角坐標系與點的位置
1.直角坐標系中,點A(3,0)在y軸上。
2.直角坐標系中,x軸上的任意點的橫坐標為0.
3.直角坐標系中,點A(1,1)在第一象限。
4.直角坐標系中,點A(-2,3)在第四象限。
5.直角坐標系中,點A(-2,1)在第二象限。
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=的值為1.
2.當x=3時,函數y=的值為1.
3.當x=-1時,函數y=的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數。
2.函數y=4x+1是正比例函數。
3.函數是反比例函數。
4.拋物線y=-3(x-2)2-5的開口向下。
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2)。
7.反比例函數的圖象在第一、三象限。
知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3.
知識點6:特殊三角函數值
1.cos30°=根號3/2。
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
初三數學學習方法與技巧總結
1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.
2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.
3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.
4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.
❷ 中考數學必考知識點歸納
初中數學知識點歸納
1、同一平面內過兩點的直線有且只有一條。
2、兩點之間線段最短。
3、過一點有且只有一條直線和已知直線垂直。
4、直線外一點與直線上各點的連接的線段中垂線段最短。
5、經過直線外一點,有且只有一條直線與這條直線平行。
6、如果兩條直線與第三條直線平行,那麼這兩條直線平行。
7、同位角相等,兩直線平行。
8、內錯角相等,兩直線平行。
9、同旁內角互補,兩直線平行。
10、三角形的任意兩邊和大於第三邊。
中考重點知識點
11、邊角邊定理(SAS):有兩邊和他們的夾角對應相等的三角形是全等三角形。
12、角邊角定理(ASA):有兩角和他們的夾邊相等的三角形是全等三角形。
13、(AAS)有兩角和其中一角的對邊相等的三角形是全等三角形。
14、邊邊邊定理(SSS):三邊對應相等的三角形是全等的。
15、角平分線上的點到這個角兩邊的距離相等。
16、等腰三角形的兩個底角相等。
17、等腰三角形的頂角角平分線平分且垂直底線。
18、等腰三角形的角平分線與底邊上的中線與高相同。
19、三個角都相等的三角形是等邊三角形。
20、有一個角是60°的三角形是等邊三角形。
初中數學重點考點
21、直角三角形中,如果一個角是30°,那他所對應的邊是斜邊的一半。
22、線段垂直平分線上的點到線段兩端的距離相同。
23、直角三角形的兩直角邊的平方和等於斜邊的平方和。
24、平行四邊形的對邊與對角相同。
25、對角線互相平分的四邊形是平行四邊形。
26、對邊平行相等的四邊形是平行四邊形。
27、對角線垂直的四邊形是菱形。
28、正方形的四個角是直角,四條邊相等。
29、等腰梯形的兩條對角線相同。
30、同一底上的兩個角相等的梯形是等腰梯形。
以上就是我為大家總結的中考 數學 必考知識點歸納,僅供參考,希望對大家有所幫助。
❸ 中考數學必考知識點有哪些
中考數學必考知識點如下:
1、三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。
2、圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。
3、若一個三角形30°內角所對的邊是某一邊的一半,那麼這個三角形是以這條長邊為斜邊的直角三角形。
4、圓錐底面半徑 r=n°/360°L(L為母線長)(r為底面半徑)。
5、直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線,AB與⊙O相交,d<r。
❹ 中考數學有哪些知識點
中考數學知識點
一、數與代數
1. 數的認識。包括有理數、實數、代數式等知識點。其中有理數涉及正負數、整數、分數等概念及其運算。代數式涉及代數式的加減乘除等基本運算。
2. 方程與不等式。包括一元一次方程、二元一次方程、不等式等知識點及其解法。此部分需要掌握基本的方程求解技巧和不等式的性質。
3. 函數初步認識。主要涉及函數的基本定義和性質,如正比例函數、反比例函數等。
二、幾何圖形
1. 平面圖形的認識。包括線段、角、三角形等基本概念及其性質。需要掌握角度計算、三角形全等判定等知識點。
2. 圖形的變換。包括平移、旋轉、軸對稱等圖形的變換性質及其在實際中的應用。此部分涉及圖形的位置關系及其變化規律的把握。
3. 圓的性質與應用。圓的定義、弧長計算、角度計算等都是中考的常考內容,另外與圓相關的陰影部分的計算也是常見題型。
三、概率與統計
主要包括統計的基本知識和概率的基本應用。涉及數據的收集與整理、概率的計算以及概率在實際生活中的應用等知識點。這部分需要理解數據背後的規律以及概率事件的處理方法。
四、綜合題型與實際應用題
中考數學中,綜合題型和實際應用題也是重要的考察內容。這類題目通常涉及多個知識點的結合,需要綜合運用所學知識解決實際問題。如幾何與代數的結合題,以及與生活實際緊密相連的應用題等。
中考數學主要考察學生對基礎知識的掌握程度以及綜合運用知識解決問題的能力。以上知識點是中考數學的主要考察內容,考生需要針對這些知識點進行系統的復習和訓練,以確保在考試中取得好成績。
❺ 數學中考知識點歸納有哪些
數學中考知識點如下:
1、絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
2、求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當a看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。
3、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
4、在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
5、除法的估算方法是多樣的,通常我們將被除數(三位數)看成一個接近它的整百整十數,除數(一位數)不變,然後計算。或者按照乘法口訣把被除數估成一個合適的數,再計算。
❻ 中考數學必考知識點有哪些
中考數學必考知識點如下:
1、三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。
2、圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。
3、平行四邊形的定義和相關概念,平行四邊形的性質,平行四邊形的對角線的性質,兩條平行線距離。
4、平行四邊形的判定定理,平行四邊形的性質與判定的綜合運用,三角形的中位線定理。
5、矩形的性質和判定,直角三角形斜邊上中線,菱形的性質和判定定理,正方形的性質和判定。
❼ 初中數學中考復習知識點
中考數學高頻考點匯總
二次函數(4個考點)
考點1:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數。
考核要求:
(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;
(2)知道常值函數;
(3)知道函數的表示方法,知道符號的意義。
考點2:用待定系數法求二次函數的解析式
考核要求:
(1)掌握求函數解析式的方法;
(2)在求函數解析式中熟練運用待定系數法。
注意求函數解析式的步驟:一設、二代、三列、四還原。
考點3:畫二次函數的圖像
考核要求:
(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像
(2)理解二次函數的圖像,體會數形結合思想;
(3)會畫二次函數的大致圖像。
考點4:二次函數的圖像及其基本性質
考核要求:
(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;
(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。
注意:
(1)解題時要數形結合;
(2)二次函數的平移要化成頂點式。
相似三角形(7個考點)
考點5:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點6:平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點7:相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。
考點8:相似三角形的判定和性質及其應用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。
考點9:三角形的重心
考核要求:知道重心的定義並初步應用。
考點10:向量的有關概念
考點11:向量的加法、減法、實數與向量相乘、向量的線性運算
考核要求:掌握實數與向量相乘、向量的線性運算
銳角三角比(2個考點)
考點12:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30°、45°、60°角的三角比值。
考點13:解直角三角形及其應用
考核要求:
(1)理解解直角三角形的意義;
(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
圓的相關概念(6個考點)
考點14:圓心角、弦、弦心距的概念
考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。
考點15:圓心角、弧、弦、弦心距之間的關系
考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。
考點16:垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點17:直線與圓、圓與圓的位置關系及其相應的數量關系
直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。
考點18:正多邊形的有關概念和基本性質
考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。
考點19:畫正三、四、六邊形。
考核要求:能用基本作圖工具,正確作出正三、四、六邊形。
數據整理和概率統計(9個考點)
考點20:確定事件和隨機事件
考核要求:
(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;
(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點21:事件發生的可能性大小,事件的概率
考核要求:
(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;
(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;
(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。
注意:
(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;
(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。
考點22:等可能試驗中事件的概率問題及概率計算
考核要求
(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;
(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;
(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。
注意:
(1)計算前要先確定是否為可能事件;
(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點23:數據整理與統計圖表
考核要求:
(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;
(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。
考點24:統計的含義
考核要求:
(1)知道統計的意義和一般研究過程;
(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。
考點25:平均數、加權平均數的概念和計算
考核要求:
(1)理解平均數、加權平均數的概念;
(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。
考點26:中位數、眾數、方差、標准差的概念和計算
考核要求:
(1)知道中位數、眾數、方差、標准差的概念;
(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。
注意:
(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;
(2)求中位數之前必須先將數據排序。
考點27:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖
考核要求:
(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;
(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.
考點28:中位數、眾數、方差、標准差、頻數、頻率的應用
考核要求:
(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;
(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;
(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。
更多文檔資料可以聯系我~
❽ 中考數學必考知識點
中考數學必考知識點:
圓的定理:
1、不在同一直線上的三點確定一個圓。
2、垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧。
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條。
9、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
10、在同圓或等圓中,相等的國心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
11、在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都相等。