㈠ 小學四年級數學知識點歸納
小學 四年級數學 知識點你們知道有哪些嗎?如果你是四年級的學生或者老師,如果你正在備戰下學期的復習,我准備了《人教版四年級下冊數學知識點 總結 》,希望對你有所幫助!
小學四年級數學知識點歸納
一、加法運算定律:
1、加法交換律:兩個數相加,交換加數的位置,和不變。a+b=b+a
2、加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再加上第一個數,和不變。(a+b)+c=a+(b+c)
加法的這兩個定律往往結合起來一起使用。
如:165+93+35=93+(165+35)依據是什麼?
3、連減的性質:一個數連續減去兩個數,等於這個數減去那兩個數的和。a-b-c=a-(b+c)
二、乘法運算定律:
1、乘法交換律:兩個數相乘,交換因數的位置,積不變。a×b=b×a
2、乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘以第三個數,也可以先把後兩個數相乘,再乘以第一個數,積不變。(a×b)×c=a×(b×c)
乘法的這兩個定律往往結合起來一起使用。如:125×78×8的簡算
3、乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這個數相乘,再把積相加。
(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
小學四年級數學知識點歸納
(1)已知總頭數和總腳數,求雞、兔各多少:
(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;
總頭數-兔數=雞數。
或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;
總頭數-雞數=兔數。
例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二(4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答略)
(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式
(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數
或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。
(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數。
或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。
例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」
解一(4×1000-3525)÷(4+15)
=475÷19=25(個)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費元,破損者不僅不給運費,還需要賠成本元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;
〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。
例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
雞兔同籠
1、雞兔同籠屬於假設問題,假設的和最後結果相反。
2、「雞兔同籠」問題的解題 方法
假設法:
①假如都是兔
②假如都是雞
③古人「抬腳法」:
解答思路:
假如每隻雞、每隻兔各抬起一半的腳,則每隻雞就變成了「獨腳雞」,每隻兔就變成了「雙腳兔」。這樣,雞和兔的腳的總數就少了一半。這種思維方法叫化歸法。
3、公式:
雞兔總腳數÷2-雞兔總數=兔的只數;
雞兔總數-兔的只數=雞的只數。
小學四年級數學知識點歸納
1、加法、減法、乘法和除法統稱四則運算。
2、在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
3、在沒有括弧的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。
4、算式有括弧,要先算括弧裡面的,再算括弧外面的;括弧裡面的算式計算順序遵循以上的計算順序。
5、先乘除,後加減,有括弧,提前算
關於「0」的運算
1、「0」不能做除數;字母表示:a÷0錯誤
2、一個數加上0還得原數;字母表示:a+0=a
3、一個數減去0還得原數;字母表示:a-0=a
4、被減數等於減數,差是0;字母表示:a-a=0
5、一個數和0相乘,仍得0;字母表示:a×0=0
6、0除以任何非0的數,還得0;字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.(無意義)
小學四年級數學知識點歸納相關 文章 :
★ 做小學四年級數學上冊知識點總結
★ 2020小學四年級上冊數學知識點歸納
★ 四年級數學上冊知識點
★ 四年級數學上冊知識點匯總
★ 小學四年級下冊數學知識點復習資料整理
★ 小學四年級數學學習方法指導
★ 小學四年級數學復習資料整理
★ 四年級數學三角形知識點歸納
★ 四年級數學的知識點總結
★ 四年級數學的學習知識總結
㈡ 四年級下冊數學小數乘法知識要點
【知識框架】
1、文具店(小數乘整數)
2、小數點搬家(小數點位置移動引起小數大小變化規律)
3、街心公園(兩個乘數小數位數與積的小數位數的關系)
4、包裝(小數乘法的豎式計算)
5、爬行最慢的哺乳動物(小數乘法的豎式計算及小數估算)
6、手拉手(小數乘法的混合運算及簡算)
【知識要點】
小數乘法的意義
1、 小數乘整數的意義與整數乘法的意義相同。可以說是求幾個相同加數和的簡便運算,也可以說是求這個小數的整數倍是多少。如:2.3×5表示求5個2.3的和是多少。也可以表示求2.3的5倍是多少。
小數乘小數的意義表示求一個數的十分之幾、百分之幾……是多少。
2、 乘法的變化規律:①在乘法中,一個因數擴大到原來的m(m≠0)倍,另一個因數擴大到原來的n(n≠0)倍,積擴大到原來積的m×n倍。②在乘法中,一個因數縮小到原來的 (m≠0)倍,另一個因數縮小到原來的 (n≠0)倍,積擴大到原來積的 倍。③在乘法中,一個因數擴大到原來的n倍(或縮小到原來的 )( n≠0),另一個因數縮小到原來的 (n≠0)(或擴大到原來的n倍),積不變。
3、 一個因數小於「1」時,積小於另一個因數。一個因數大於「1」時,積大於另一個因數。一個因數等於「1」時,積等於另一個因數。
小數點位置移動引起小數大小變化的規律
1、 小數點位置移動引起小數大小變化的規律:小數點向左移動一位、兩位、三位……這個數就縮小到原來的 、 、 ……小數點向右移動一位、兩位、三位……這個數就擴大到原來的10倍、100倍、1000倍……
2、 小數點右移,位數不夠時,要添「0」補位,小數點移動完後,整數最高位前邊的「0」要去掉;小數點左移,位數不夠時,也用「0」補足,點上小數點,若整數部分沒有數,用「0」表示,若小數末尾有0,根據小數的性質,應把末尾的「0」去掉。
3、 積的小數位數與乘數的小數位數的關系:在小數乘法中,兩個乘數一共有幾位小數,積就有幾位小數。
小數乘法的法則
1、 計算小數乘法,先按照整數乘法的法則算出積,再看因數中一共有幾位小數,就從積的末位起向左數出幾位,點上小數點。結果能化簡的要化簡。
2、 小數乘法估算:先將兩個因數四捨五入保留整數,然後再相乘。
3、 小數四則混合運算的運算順序與整數四則混合運算的順序相同:同級運算,從左往右;兩級運算,先二後一;有括弧的,先里後外。
整數的`運算定律在小數運算中仍然適用。例如乘法的結合律,交換律,分配律。等等。
小數乘法
1、小數乘整數:意義求幾個相同加數的和的簡便運算。
如:1.53表示1.5的3倍是多少或3個1.5的和的簡便運算。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
2、小數乘小數:意義就是求這個數的幾分之幾是多少。
如:1.50.8就是求1.5的十分之八是多少。
1.51.8就是求1.5的1.8倍是多少。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。
3、規律(1):一個數(0除外)乘大於1的數,積比原來的數大;
一個數(0除外)乘小於1的數,積比原來的數小。
4、求近似數的方法一般有三種:
⑴四捨五入法;⑵進一法;⑶去尾法
5、計算錢數,保留兩位小數,表示計算到分。保留一位小數,表示計算到角。
6、小數四則運算順序跟整數是一樣的。
7、運算定律和性質:
加法:加法交換律:a+b=b+a加法結合律:(a+b)+c=a+(b+c)
減法:減法性質:a-b-c=a-(b+c)a-(b-c)=a-b+c
乘法:乘法交換律:ab=ba乘法結合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc【(a-b)c=ac-bc】
除法:除法性質:abc=a(bc)
小數除法
8、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。
如:0.60.3表示已知兩個因數的積0.6與其中的一個因數0.3,求另一個因數的運算。
9、小數除以整數的計算方法:小數除以整數,按整數除法的方法去除。,商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。
10、除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按除數是整數的小數除法的法則進行計算。
注意:如果被除數的位數不夠,在被除數的末尾用0補足。
11、在實際應用中,小數除法所得的商也可以根據需要用四捨五入法保留一定的小數位數,求出商的近似數。
12、除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。
②除數不變,被除數擴大,商隨著擴大。③被除數不變,除數縮小,商擴大。
13、循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如6.3232的循環節是32。
14、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。