⑴ 初一到初三的數學知識歸納是什麼
初一到初三的數學知識歸納:
初中數學知識點。
(一)概率。
1、隨機事件:在一定的條件下可能發生也可能不發生的事件,叫做隨機事件。
2、互斥事件:不可能同時發生的兩個事件叫做互斥事件。
3、對立事件:即必有一個發生的互斥事件叫做對立事件。
4、必然事件:那些無需通過實驗就能夠預先確定它們在每一次實驗中都一定會發生的事件稱為必然事件。
5、不可能事件:那些在每一次實驗中都一定不會發生的事件稱為不可能事件。
(二)有理數。
1、定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。
2、相反數:指絕對值相等,正負號相反的兩個數互為相反數。
3、絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。
4、有理數的加減法:同號相加,把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。
5、有理數的乘法:兩數相乘,同號得正,異號得負,並把絕對值相乘。
6、有理數的除法:兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不為0的數,都得0。
(三)整式。
1、是單項式和多項式的統稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數不能含有字母。
2、整式的加減運算時,如果遇到括弧先去掉括弧,再合並同類項。
(四)一元一次方程。
1、定義:只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。
2、解一元一次方程的步驟:
①去分母:把系數化成整數。
②去括弧。
③移項:把等式一邊的某項變號後移到另一邊。
④合並同類項。
⑤系數化為1。
(五)實數。
1、平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數,負數沒有平方根。
2、如果一個數的立方等於a,那麼這個數叫a的立方根,也稱為三次方根。
⑵ 求初一到初三的數學知識點的概括、謝謝
年級(上)數學知識點歸納與總結
一、 知識梳理
知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、 -0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
註:有限小數和無限循環小數都可看作分數。
知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).
知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。
加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。
知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。
知識點11: 乘法與除法
1.乘法法則
2.除法法則
3.多個非零的數相乘除最後結果符號如何確定
知識點12:倒數
1. 倒數概念
2. 如何求一個數的倒數?(注意與相反數的區別)
知識點13:乘方
1. 乘方的概念,乘方的結果叫什麼?
2. 認識底數,指數
3. 正數的任何次冪是_________,零的任何次冪________
負數的偶次冪是_________奇次冪是________
知識點14:混合計算
注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經常考帶乘方的計算.
知識點15:科學記數法
科學記數法的概念? 注意a的范圍
⑶ 初一到初三數學知識點總結歸納
2020年的中考就要到了,同學們可以利用這個寒假系統的復習一下初中數學的重要知識點,接下來給大家分享初一到初三數學知識點,供參考。
數軸
1.數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸。
數軸的三要素:原點,單位長度,正方向。
2.數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數。(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數。)
3.用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大。
概率
1.隨機事件:在一定的條件下可能發生也可能不發生的事件,叫做隨機事件。
2.互斥事件:不可能同時發生的兩個事件叫做互斥事件。
3.對立事件:即必有一個發生的互斥事件叫做對立事件。
4.必然事件:那些無需通過實驗就能夠預先確定它們在每一次實驗中都一定會發生的事件稱為必然事件。
5.不可能事件:那些在每一次實驗中都一定不會發生的事件稱為不可能事件。
解一元二次方程的步驟
1.配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式。
2.分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。
3.公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c。
平行線
1.在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4.判定兩條直線平行的方法:
(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5.平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
全等三角形
1.經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。
2.三角形全等的判定
(1)SSS(邊邊邊)
三邊對應相等的三角形是全等三角形。
(2)SAS(邊角邊)
兩邊及其夾角對應相等的三角形是全等三角形。
(3)ASA(角邊角)
兩角及其夾邊對應相等的三角形全等。
(4)AAS(角角邊)
兩角及其一角的對邊對應相等的三角形全等。
(5)RHS(直角、斜邊、邊)
在一對直角三角形中,斜邊及另一條直角邊相等。
3.角平分線
(1)從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線。
(2)性質
①角平分線分得的兩個角相等,都等於該角的一半。
②角平分線上的點到角的兩邊的距離相等。
有理數
1.定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。
2.數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。
3.相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。
4.絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
5.有理數的加減法
同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。
6.有理數的乘法
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數與0相乘,積為0.例:0×1=0
7.有理數的除法
除以一個不為0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除
以任何一個不為0的數,都得0。
8.有理數的乘方
求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。
⑷ 初中一年級到高中三年級數學主要學的什麼內容
初一:代數加減乘除,幾何:平行線,角相等的證明,簡單統計
初二:代數:平方,開根,一次函數,反比例函讓襪御數。幾何:三角形全等,平行四邊形,矩形,菱形,正方形的證明,簡單概率
初三:二次函數,相似證明,圓,幾何回顧,計算概率,估計,眾數坦岩;平均數.標准差.方差.極差的計算,解直角三角形,三角好雹函數。(初三數學是最重要的)
高中我不知道
⑸ 初一到初三數學知識點最全整理 中考必背重點
函數學習口決
正比例函數是直線,圖象一定過圓點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵。
反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。
二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,b的食物中毒結全算,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。
相似三角形知識點
考點:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小.
考點:平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算.
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用.
考點:相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義.
過三點的圓
1、過三點的圓
不在同一直線上的三個點確定一個圓。
2、三角形的外接圓
經過三角形的三個頂點的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4、圓內接四邊形性質(四點共圓的判定條件)
圓內接四邊形對角互補。
以上就是我為大家總結的初一到初三 數學知識點 ,僅供參考,希望對大家有所幫助。