❶ 大一高等數學知識點總結 考試要點有哪些
我們當時考試的時候,基本上所有課後習題掌握成功就可以,他這個難度並不高,除非是那種什麼物理系、數學系。
高等數學知識點總結
高數大一上期末復習要點
第一章:1、極限(夾逼准則)。2、連續(學會用定義證明一個函數連續,判斷間斷點類型)
第二章:1、導數(學會用定義證明一個函數是否可導) 註:連續不一定可導,可導一定連續。2、求導法則(背)3、求導公式 也可以是微分公式。
第三章:1、微分中值定理(一定要熟悉並靈活運用--第一節)。2、洛必達法則 。3、泰勒公式 拉格朗日中值定理。4、曲線凹凸性、極值(高中學過,不需要過多復習)。5、曲率公式 曲率半徑
第四章、第五章:積分,不定積分:1、兩類換元法。2、分部積分法 (注意加C )定積分:1、定義。2、反常積分
第六章: 定積分的應用。主要有幾類:極坐標、求做功、求面積、求體積、求弧長
第七章:向量問題不會有很難1、方向餘弦。 2、向量積。 3、空間直線(兩直線的夾角、線面夾角、求直線方程)。 4、空間平面 。5、空間旋轉面(柱面)。
❷ 大一高數知識點有哪些
大一高數知識點有:
1、隱函數相對於顯函數而言的一種函數形式;所謂顯函數,即直接用含自變數的式子表示的函數。
2、函數為從量的角度對運動變化的抽象表述,為一種刻畫運動變化中變化量相依關系的數學模型。
3、常數函數、冪函數、指數函數、對數函數、三角函數共六大類函數統稱為基本初等函數。
4、由基本初等函數經過有限次四則運算和有限次的函數復合構成的,並且能用一個數學式子表示的函數,稱為初等函數。
5、無窮小的性質有限個無窮小的代數和為無窮小;有限個無窮小的乘積為無窮小;有界函數與無窮小的乘積為無窮小。
❸ 大學數學主要學的是些什麼內容
大學的數學學習內容屬於高等數學,主要的內容有:
1、極限
極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。極限是解決高等數學問題的基礎。
2、微積分
微積分是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科,在許多領域都有重要的應用。
3、空間解析幾何
藉助矢量的概念可使幾何更便於應用到某些自然科學與技術領域中去,因此,空間解析幾何介紹空間坐標系後,緊接著介紹矢量的概念及其代數運算。
(3)大一數學學哪些知識點擴展閱讀
歷史發展
一般認為,16世紀以前發展起來的各個數學學科總的是屬於初等數學的范疇,因而,17世紀以後建立的數學學科基本上都是高等數學的內容。由此可見,高等數學的范疇無法用簡單的幾句話或列舉其所含分支學科來說明。
19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。
分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。