當前位置:首頁 » 基礎知識 » 數學文科知識
擴展閱讀
經濟法基礎怎麼改分 2024-11-24 19:03:23
小學生違紀如何批評教育 2024-11-24 19:01:45

數學文科知識

發布時間: 2024-10-04 17:14:08

① 高三文科數學公式總結

高三文科生在復習數學科目時,首先需要掌握數學公式。為了幫助高考考生掌握數學公式,下面我為高三文科生整理數學公式,希望對大家有所幫助!
高三文科數學公式
一、對數函數

log.a(MN)=logaM+logN

loga(M/N)=logaM-logaN

logaM^n=nlogaM(n=R)

logbN=logaN/logab(a>0,b>0,N>0 a、b均不等於1)

二、簡單幾何體的面積與體積

S直稜柱側=c*h(底面周長乘以高)

S正棱椎側=1/2*c*h′(底面的周長和斜高的一半)

設正稜台上、下底面的周長分別為c′,c,斜高為h′,S=1/2*(c+c′)*h

S圓柱側=c*l

S圓台側=1/2*(c+c′)*l=兀*(r+r′)*l

S圓錐側=1/2*c*l=兀*r*l

S球=4*兀*R^3

V柱體=S*h

V錐體=(1/3)*S*h

V球=(4/3)*兀*R^3

三、兩直線的位置關系及距離公式

(1)數軸上兩點間的距離公式|AB|=|x2-x1|

(2) 平面上兩點A(x1,y1),(x2,y2)間的距離公式

|AB|=sqr[(x2-x1)^2+(y2-y1)^2]

(3) 點P(x0,y0)到直線l:Ax+By+C=0的距離公式 d=|Ax0+By0+C|/sqr

(A^2+B^2)

(4) 兩平行直線l1:=Ax+By+C=0,l2=Ax+By+C2=0之間的距離d=|C1-

C2|/sqr(A^2+B^2)

同角三角函數的基本關系及誘導公式

sin(2*k*兀+a)=sin(a)

cos(2*k*兀+a)=cosa

tan(2*兀+a)=tana

sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana

sin(兀+a)=-sina

sin(兀-a)=sina

cos(兀+a)=-cosa

cos(兀-a)=-cosa

tan(兀+a)=tana

四、二倍角公式及其變形使用

1、二倍角公式

sin2a=2*sina*cosa

cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2

tan2a=(2*tana)/[1-(tana)^2]

2、二倍角公式的變形

(cosa)^2=(1+cos2a)/2

(sina)^2=(1-cos2a)/2

tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

五、正弦定理和餘弦定理

正弦定理:

a/sinA=b/sinB=c/sinC

餘弦定理:

a^2=b^2+c^2-2bccosA

b^2=a^2+c^2-2accosB

c^2=a^2+b^2-2abcosC

cosA=(b^2+c^2-a^2)/2bc

cosB=(a^2+c^2-b^2)/2ac

cosC=(a^2+b^2-c^2)/2ab

tan(兀-a)=-tana

sin(兀/2+a)=cosa

sin(兀/2-a)=cosa

cos(兀/2+a)=-sina

cos(兀/2-a)=sina

tan(兀/2+a)=-cota

tan(兀/2-a)=cota

(sina)^2+(cosa)^2=1

sina/cosa=tana

兩角和與差的餘弦公式

cos(a-b)=cosa*cosb+sina*sinb

cos(a-b)=cosa*cosb-sina*sinb

兩角和與差的正弦公式

sin(a+b)=sina*cosb+cosa*sinb

sin(a-b)=sina*cosb-cosa*sinb

兩角和與差的正切公式

tan(a+b)=(tana+tanb)/(1-tana*tanb)

tan(a-b)=(tana-tanb)/(1+tana*tanb)
高中數學知識點速記口訣
1.《集合與函數》

內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。

復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。

指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。

函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數;

正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。

兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;

求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。

冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,

奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。

2.《三角函數》

三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,

頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,

變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,

餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。

計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

1加餘弦想餘弦,1減餘弦想正弦,冪升一次角減半,升冪降次它為范;

三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;

利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;

3.《不等式》

解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。

高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。

證不等式的 方法 ,實數性質威力大。求差與0比大小,作商和1爭高下。

直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。

還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。

4.《數列》

等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。

數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,

取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:

一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:

首先驗證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。

5.《復數》

虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。

對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。

代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。

一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。

利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,

減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。

三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,

兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。

6.《排列、組合、二項式定理》

加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。

兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。

排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。

不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。

關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。

7.《立體幾何》

點線面三位一體,柱錐 檯球 為代表。距離都從點出發,角度皆為線線成。

垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。

方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。

異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。

8.《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。

笛卡爾的觀點對,點和有序實數對,兩者一一來對應,開創幾何新途徑。

兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。

三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。

四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。

解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
高三文科 數學 學習方法
一:加深理解

對數學課本里的概念要重新的認識,進一步加深對公式,定理的理解和掌握,認真看書,多練習,全面掌握,結合所有資料,提高解題的能力和更深知識的理解。

二:認真做筆記

上課時,一定要認真聽,做筆記。聽課不只是要聽而已,還在積極的思考老師提出的問題,想想如何解決這個問題,應該要用什麼方法,什麼公式等等。老師上課時講的,都會有一些的解題方法和思路,還有平時都會出錯的問題,如何去解決,判斷。所以上課做好筆記是必須的。

三:反復練習