當前位置:首頁 » 基礎知識 » 數學圓的性質知識點
擴展閱讀
批發兒童唐裝棉衣哪裡有 2024-11-24 21:27:36
池州幼兒教育哪裡找 2024-11-24 21:26:34
林晨同學湖北哪裡人 2024-11-24 21:25:51

數學圓的性質知識點

發布時間: 2024-10-02 19:20:20

1. 初三數學圓知識點總結

圓是初三數學幾何部分的重要內容,特別是切線的判定與性質的考題已成為多地中考數學幾何壓軸題的熱點題型。下面我為大家整理了初三數學圓知識點,供大家參考。

一、圓的概念

集合形式的概念:

1、圓可以看作是到定點的距離等於定長的點的集合;

2、圓的外部:可以看作是到定點的距離大於定長的點的集合;

3、圓的內部:可以看作是到定點的距離小於定長的點的集合

軌跡形式的概念:

1、圓:到定點的距離等於定長的點的軌跡就是以定點為圓心,定長為半徑的圓;

固定的端點O為圓心。連接圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點之間的部分叫做圓弧,簡稱弧。

2、垂直平分線:到線段兩端距離相等的點的軌跡是這條線段的垂直平分線;

3、角的平分線:到角兩邊距離相等的點的軌跡是這個角的平分線;

4、到直線的距離相等的點的軌跡是:平行於這條直線且到這條直線的距離等於定長的兩條直線;

5、到兩條平行線距離相等的點的軌跡是:平行於這兩條平行線且到兩條直線距離都相等的一條直線。

二、點、直線、圓和圓的位置關系

1.點和圓的位置關系

①點在圓內<=>點到圓心的距離小於半徑;

②點在圓上<=>點到圓心的距離等於半徑;

③點在圓外<=>點到圓心的距離大於半徑。

2.過三點的圓不在同一直線上的三個點確定一個圓。

3.外接圓和外心經過三角形的三個頂點可以做一個圓,這個圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心。

4.直線和圓的位置關系

相交:直線和圓有兩個公共點叫這條直線和圓相交,這條直線叫做圓的割線。

相切:直線和圓有一個公共點叫這條直線和圓相切,這條直線叫做圓的切線,這個點叫做切點。

相離:直線和圓沒有公共點叫這條直線和圓相離。

5.直線和圓位置關系的性質和判定

如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼:

①直線l和⊙O相交<=>d<>;

②直線l和⊙O相切<=>d=r;

③直線l和⊙O相離<=>d>r。

三、正多邊形和圓

1、正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

2、正多邊形與圓的關系:

(1)將一個圓n(n≥3)等分(可以藉助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。

(2)這個圓是這個正多邊形的外接圓。

3、正多邊形的有關概念:

(1)正多邊形的中心——正多邊形的外接圓的圓心。

(2)正多邊形的半徑——正多邊形的外接圓的半徑。

(3)正多邊形的邊心距——正多邊形中心到正多邊形各邊的距離。

(4)正多邊形的中心角——正多邊形每一邊所對的外接圓的圓心角。

4、正多邊形性質:

(1)任何正多邊形都有一個外接圓。

(2)正多邊形都是軸對稱圖形,當邊數是偶數時,它又是中心對稱圖形,正n邊形的對稱軸有n條。(3)邊數相同的正多邊形相似。

四、有關圓的公式

(1)給直徑求圓的周長:c=πd。

(2)給半徑求圓的周長:c=2πr。

(3)給直徑求圓的半徑:r=d÷2。

(4)給周長求圓的半徑:r=c÷π÷2。

(5)給半徑求圓的直徑:d=2r。

(6)給周長求圓的直徑:d=c÷π。

(7)給直徑求半圓周長:c=πr+d。

(8)給半徑求半圓周長:c=πr+2r。

(9)給半徑求圓的面積:s=πr²。

(10)給直徑求圓的面積:s=π(d÷2)²。

(11)給周長求圓的面積:s=π(c÷π÷2)²。

(12)給半徑求半圓面積:s=πr²÷2。

(13)給直徑求半圓面積:s=π(d÷2)²÷2。

(14)給大圓和小圓半徑求圓環面積:s=π(R²-r²)。

(15)給大圓和小圓半徑求圓環面積:s=πR²-πr²。

2. 六年級數學圓的知識點和公式有哪些

六年級數學圓的知識點和公式有以下:

周長:C=2πr (r半徑)。

面積:S=πr²。

半圓周長:C=πr+2r。

半圓面積:S=πr²/2。

圓的標准方程:在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標准方程是(x-a)^2+(y-b)^2=r^2 。

圓的一般方程:把圓的標准方程展開,移項,合並同類項後,可得圓的一般方程是x^2+y^2+Dx+Ey+F=0。和標准方程對比,其實D=-2a,E=-2b,F=a^2+b^2。

圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。

數學圓簡介:

在一個平面內,圍繞一個點並以一定長度為距離旋轉一周所形成的封閉曲線叫做圓(Circle)。圓有無數條對稱軸。圓形是一種圓錐曲線,由平行於圓錐底面的平面截圓錐得到。

圓形規定為360°,是古巴比倫人在觀察地平線太陽升起的時候,大約每4分鍾移動一個位置,一天24小時移動了360個位置,所以規定一個圓內角為360°。這個°,代表太陽。

3. 六年級數學圓的知識點和公式

六年級數學圓的知識點和公式如下:

1、圓的基本概念:圓是一種幾何圖形,由一條線段圍繞一個端點旋轉一周所形成的封閉曲線。圓有無數條對稱軸,對稱軸是經過圓心的直線。

2、圓的性質:圓是軸對稱圖形,其對稱軸是經過圓心的直線;圓具有旋轉不變性,即圓在旋轉過程中形狀和大小都不會發生變化;圓是中心對稱圖形,即圓繞其圓心旋轉任意角度都會與原來的圖形重合。

3、圓的周長和面積:圓的周長是指繞圓一周的長度,用公式C=πd表示,其中π是一個無理數,約等於3.14159,d是圓的直徑;圓的面積是指圓所佔平面的大小,用公式S=πr²表示,其中π是一個無理數,約等於3.14159,r是圓的半徑。

4、圓和直線的關系:當直線和圓相交時,它們會相交於兩點;當直線和圓相切時,它們只有一個公共點;當直線和圓相離時,它們沒有公共點。

5、圓的方程:在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標准方程是(x-a)²+(y-b)²=r²。

4. 數學圓,知識點

1、圓是定點的距離等於定長的點的集合

2、圓的內部可以看作是圓心的距離小於半徑的點的集合

3、圓的外部可以看作是圓心的距離大於半徑的點的集合

4、同圓或等圓的半徑相等

5、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

9、定理不在同一直線上的三點確定一個圓。

10、垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

11、推論1:

①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

12、推論2:圓的兩條平行弦所夾的弧相等

13、圓是以圓心為對稱中心的中心對稱圖形

14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

16、定理:一條弧所對的圓周角等於它所對的圓心角的一半

17、推論:1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

18、推論:2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

19、推論:3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

20、定理: 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

21、①直線L和⊙O相交 d<r

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d>r

22、切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線

23、切線的性質定理圓的切線垂直於經過切點的半徑

24、推論1 經過圓心且垂直於切線的直線必經過切點

25、推論2 經過切點且垂直於切線的直線必經過圓心

26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角

27、圓的外切四邊形的兩組對邊的和相等

28、弦切角定理:弦切角等於它所夾的弧對的圓周角

29、推論:如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

30、相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等

31、推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項

32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

34、如果兩個圓相切,那麼切點一定在連心線上

35、①兩圓外離 d>R+r

②兩圓外切 d=R+r

③兩圓相交 R-r<d<R+r(R>r)

④兩圓內切 d=R-r(R>r)

⑤兩圓內含 d<R-r(R>r)

36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

37、定理:把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

38、定理: 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

39、正n邊形的每個內角都等於(n-2)×180°/n

40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

41、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

42、正三角形面積√3a/4 a表示邊長

43、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,

因此k (n-2)180°/n=360°化為(n-2)(k-2)=4

44、弧長計算公式:L=n兀R/180

45、扇形面積公式:S扇形=n兀R^2/360=LR/2

46、內公切線長= d-(R-r) 外公切線長= d-(R+r)