當前位置:首頁 » 基礎知識 » 九年級數學直角三角形和圓知識點

九年級數學直角三角形和圓知識點

發布時間: 2024-09-22 04:01:58

1. 九年級數學下冊知識點

課堂臨時報佛腳,不如 課前預習 好。其實任何學科都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的 九年級數學 知識點,希望對大家有所幫助。

九年級下冊數學知識點歸納

★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆內容提要☆

一、圓的基本性質

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3.「三點定圓」定理

4.垂徑定理及其推論

5.「等對等」定理及其推論

6.與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.切線的性質(重點)

2.切線的判定定理(重點)

3.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理

3.兩圓的公切線:⑴定義⑵性質

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內切圓及性質

3.圓的外切四邊形、內接四邊形的性質

4.正多邊形及計算

中心角:初中數學復習提綱

內角的一半:初中數學復習提綱(右圖)

(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)

六、一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算方法

6.圓柱、圓錐的側面展開圖及相關計算

初三下冊數學知識點 總結

一、銳角三角函數

正弦等於對邊比斜邊

餘弦等於鄰邊比斜邊

正切等於對邊比鄰邊

餘切等於鄰邊比對邊

正割等於斜邊比鄰邊

二、三角函數的計算

冪級數

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.

泰勒展開式(冪級數展開法)

f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...

三、解直角三角形

1.直角三角形兩個銳角互余。

2.直角三角形的三條高交點在一個頂點上。

3.勾股定理:兩直角邊平方和等於斜邊平方

四、利用三角函數測高

1、解直角三角形的應用

(1)通過解直角三角形能解決實際問題中的很多有關測量問.

如:測不易直接測量的物體的高度、測河寬等,關鍵在於構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.

(2)解直角三角形的一般過程是:

①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).

②根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.

初三 數學學習方法

一、該記的記,該背的背,不要以為理解了就行

有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了「乘法九九表」,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9.9時用九個9去相加得出81就太不合算了。而用「九九八十一」得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。

二、幾個重要的數學思想

1、「方程」的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。

所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。

2、「數形結合」的思想

大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視「數形結合」的 思維訓練 ,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣。

九年級數學下冊知識點相關 文章 :

★ 九年級數學下冊圓的知識點整理

★ 人教版九年級數學知識點歸納

★ 最新初三數學知識點總結大全

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納總結

★ 初中初三數學知識點

★ 初三數學知識點歸納人教版

★ 九年級下學期期末數學復習資料

★ 初中九年級數學知識點總結歸納

★ 初三數學基礎知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

2. 初中數學圓的知識點歸納總結

初中數學知識是需要總結和歸納的,不然知識就會零零散散。為了幫助同學們更好的學習。下面是由我為大家整理的「初中數學圓的知識點歸納總結」,僅供參考,歡迎大家閱讀。

初中數學圓的知識點歸納總結

一、圓的定義。

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內,到一個定點的距離都相等的點組成的圖形。

二、圓的各元素。

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、弧:圓上兩點之間的曲線部分。半圓周也是弧。

(1)劣弧:小於半圓周的弧。

(2)優弧:大於半圓周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質。

1、圓的對稱性。

(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是旋轉對稱圖形。

2、垂徑定理。

(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

陵空檔(2)推論:

平分弦尺亂(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設⊙O的半徑為r,OP=d。

7、(1)過兩虧老點的圓的圓心一定在兩點間連線段的中垂線上。

(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

(直角三角形的外心就是斜邊的中點。)

8、直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。

直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;

直線與圓沒有交點,直線與圓相離。

9、平面直角坐標系中,A(x1,y1)、B(x2,y2)。

則AB=(x1+x2,y1+y2)

10、圓的切線判定。

(1)d=r時,直線是圓的切線。

切點不明確:畫垂直,證半徑。

(2)經過半徑的'外端且與半徑垂直的直線是圓的切線。

切點明確:連半徑,證垂直。

11、圓的切線的性質(補充)。

(1)經過切點的直徑一定垂直於切線。

(2)經過切點並且垂直於這條切線的直線一定經過圓心。

12、切線長定理。

(1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。

(2)切線長定理。

∵PA、PB切⊙O於點A、B

∴PA=PB,∠1=∠2。

13、內切圓及有關計算。

(1)三角形內切圓的圓心是三個內角平分線的交點,它到三邊的距離相等。

(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊於點D、E、F。

求:AD、BE、CF的長。

分析:設AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求內切圓的半徑r。

分析:先證得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

得r=(b+a-c)/2

(4)S△ABC=abc/4r

14、(補充)

(1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。

如圖,BC切⊙O於點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圓的兩條弦AB與CD相交於點P,則PAPB=PCPD。

(3)切割線定理。

如圖,PA切⊙O於點A,PBC是⊙O的割線,則PA2=PBPC。

(4)推論:如圖,PAB、PCD是⊙O的割線,則PAPB=PCPD。

15、圓與圓的位置關系。

(1)外離:d>r1+r2,交點有0個;

外切:d=r1+r2,交點有1個;

相交:r1-r2

內切:d=r1-r2,交點有1個;

內含:0≤d

(2)性質。

相交兩圓的連心線垂直平分公共弦。

相切兩圓的連心線必經過切點。

16、圓中有關量的計算。

(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。

L=n(圓心角)xπ(圓周率)xr(半徑)/180

(2)扇形的面積用S表示。

S=lr/2

(3)圓錐的側面展開圖是扇形。

r為底面圓的半徑,a為母線長。

扇形的圓心角α=l/r

S側=arS全=ar+r2

拓展閱讀:初中數學學習方法

1、課前預習閱讀。預習課文時,要准備一張紙、一支筆,將課本中的關鍵詞語、產生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助於理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。

2、課堂閱讀。預習時,我們只對所要學的教材內容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預習時所做的標記和批註,結合老師的講授,進一步閱讀課文,從而掌握重點、關鍵,解決預習中的疑難問題。

3、課後復習閱讀。課後復習是課堂學習的延伸,既可解決在預習和課堂中仍然沒有解決的問題,又能使知識系統化,加深和鞏固對課堂學習內容的理解和記憶。一節課後,必須先閱讀課本,然後再做作業,一個單元後,應全面閱讀課本,對本單元的內容前後聯系起來,進行綜合概括,寫出知識小結,進行查缺補漏。

3. 人教版初三數學知識點歸納

初三數學知識點歸納人教版有哪些?初中數學學習是對學生邏輯計算能力的培養,學好初三數學的關鍵就在於要適時適量地進行 總結 歸類,下面是我整理的初三數學知識點,歡迎大家閱讀學習!

初三數學知識點總結

一、 直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從圖形、表示法、界限、端點個數、基本性質等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用線段的基本性質論證三角形兩邊之和大於第三邊)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示 方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明直角三角形中斜邊大於直角邊)

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、 三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②線的交點-三角形的心③性質

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法-反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、 四邊形

分類表:

1.一般性質(角)

⑴內角和:360

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的`四邊形各邊中點得矩形。

⑶外角和:360

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形平行四邊形矩形正方形

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常平移一腰、平移對角線、作高、連結頂點和對腰中點並延長與底邊相交轉化為三角形。

6.作圖:任意等分線段。

初三數學知識點歸納大全

第四章直線形

★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。

☆內容提要☆

一、直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從「圖形」、「表示法」、「界限」、「端點個數」、「基本性質」等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用「線段的基本性質」論證「三角形兩邊之和大於第三邊」)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明「直角三角形中斜邊大於直角邊」)

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②__線的交點―三角形的×心③性質

①高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法―反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、四邊形

分類表:

1.一般性質(角)

⑴內角和:360°

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

┗→菱形――↑

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常「平移一腰」、「平移對角線」、「作高」、「連結頂點和對腰中點並延長與底邊相交」轉化為三角形。

6.作圖:任意等分線段。

初中數學知識點總結歸納

代數部分:有理數、無理數、實數整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(一次函數、二次函數、反比例函數)

幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

1、實數的分類

有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環循小數)都是有理數。如:-3,,0.231,0.737373...

無理數:無限不環循小數叫做無理數如:π,-,0.1010010001...(兩個1之間依次多1個0)。

實數:有理數和無理數統稱為實數。

2、無理數

在理解無理數時,要抓住"無限不循環"這一時之,它包含兩層意思:一是無限小數;二是不循環.二者缺一不可.歸納起來有四類:

(1)開方開不盡的數,如等;

(2)有特定意義的數,如圓周率π,或化簡後含有π的數,如+8等;

(3)有特定結構的數,如0.1010010001...等;

(4)某些三角函數,如sin60o等。

注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標准.

3、非負數:正實數與零的統稱。(表為:x≥0)

常見的非負數有:

性質:若干個非負數的和為0,則每個非負擔數均為0。

4、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。

解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸("三要素")。

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。

作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

5、相反數

實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關於原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。

即:(1)實數的相反數是。

初三數學知識點歸納人教版相關 文章 :

★ 人教版九年級數學知識點歸納

★ 人教版初三數學知識點復習資料備戰中考

★ 初中數學知識點總結

★ 人教版必修3數學演算法初步知識點歸納

★ 人教版八年級數學上冊知識點總結

★ 人教版初一數學下冊知識點復習總結備戰中考

★ 人教版九年級歷史下冊知識點歸納

★ 人教版高三年級數學知識點總結

★ 人教版高三年級數學必考知識點

★ 人教版數學三年級下冊知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

4. 九年級數學圓的知識點

一、圓的相關概念

1、圓的定義

在一個個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。

2、圓的幾何表示

以點O為圓心的圓記作「⊙O」,讀作「圓O」

二、弦、弧等與圓有關的定義

(1)弦

連接圓上任意兩點的線段叫做弦。(如圖中的AB)

(2)直徑

經過圓心的弦叫做直徑。(如途中的CD)

直徑等於半徑的2倍。

(3)半圓

圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。

(4)弧、優弧、劣弧

圓上任意兩點間的部分叫做圓弧,簡稱弧。

弧用符號「⌒」表示,以A,B為端點的弧記作「 」,讀作「圓弧AB」或「弧AB」。

大於半圓的弧叫做優弧(多用三個字母表示);小於半圓的弧叫做劣弧(多用兩個字母表示)

三、垂徑定理及其推論

垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。

推論1:(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。

(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。

(3)平分弦所對的一條弧的直徑垂直平分弦,並且平分弦所對的另一條弧。

推論2:圓的兩條平行弦所夾的弧相等。

垂徑定理及其推論可概括為:

過圓心

垂直於弦

直徑平分弦知二推三

平分弦所對的優弧

平分弦所對的劣弧

四、圓的對稱性

1、圓的軸對稱性

圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。

2、圓的中心對稱性

圓是以圓心為對稱中心的中心對稱圖形。

五、弧、弦、弦心距、圓心角之間的關系定理

1、圓心角

頂點在圓心的角叫做圓心角。

2、弦心距

從圓心到弦的距離叫做弦心距。

3、弧、弦、弦心距、圓心角之間的關系定理

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。

推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等。

六、圓周角定理及其推論

1、圓周角

頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。

2、圓周角定理

一條弧所對的圓周角等於它所對的圓心角的一半。

推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。

七、點和圓的位置關系

設⊙O的半徑是r,點P到圓心O的距離為d,則有:

d

d=r點P在⊙O上;

d>r點P在⊙O外。

八、過三點的圓

1、過三點的圓

不在同一直線上的三個點確定一個圓。

2、三角形的外接圓

經過三角形的三個頂點的圓叫做三角形的外接圓。

3、三角形的外心

三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。

4、圓內接四邊形性質(四點共圓的判定條件)

圓內接四邊形對角互補。

九、反證法

先假設命題中的結論不成立,然後由此經過推理,引出矛盾,判定所做的假設不正確,從而得到原命題成立,這種證明方法叫做反證法。

十、直線與圓的位置關系

直線和圓有三種位置關系,具體如下:

(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;

(2)相切:直線和圓有公共點時,叫做直線和圓相切,這時直線叫做圓的切線,

(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。

如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼:

直線l與⊙O相交d

直線l與⊙O相切d=r;

直線l與⊙O相離d>r;

十一、切線的判定和性質

1、切線的判定定理

經過半徑的外端並且垂直於這條半徑的直線是圓的切線。

2、切線的性質定理

圓的切線垂直於經過切點的半徑。

十二、切線長定理

1、切線長

在經過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。

2、切線長定理

從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。

十三、三角形的內切圓

1、三角形的`內切圓

與三角形的各邊都相切的圓叫做三角形的內切圓。

2、三角形的內心

三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心。

十四、圓和圓的位置關系

1、圓和圓的位置關系

如果兩個圓沒有公共點,那麼就說這兩個圓相離,相離分為外離和內含兩種。

如果兩個圓只有一個公共點,那麼就說這兩個圓相切,相切分為外切和內切兩種。

如果兩個圓有兩個公共點,那麼就說這兩個圓相交。

2、圓心距

兩圓圓心的距離叫做兩圓的圓心距。

3、圓和圓位置關系的性質與判定

設兩圓的半徑分別為R和r,圓心距為d,那麼

兩圓外離d>R+r

兩圓外切d=R+r

兩圓相交R—r

兩圓內切d=R—r(R>r)

兩圓內含dr)

4、兩圓相切、相交的重要性質

如果兩圓相切,那麼切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦。

十五、正多邊形和圓

1、正多邊形的定義

各邊相等,各角也相等的多邊形叫做正多邊形。

2、正多邊形和圓的關系

只要把一個圓分成相等的一些弧,就可以做出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。

十六、與正多邊形有關的概念

1、正多邊形的中心

正多邊形的外接圓的圓心叫做這個正多邊形的中心。

2、正多邊形的半徑

正多邊形的外接圓的半徑叫做這個正多邊形的半徑。

3、正多邊形的邊心距

正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。

4、中心角

正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。

十七、正多邊形的對稱性

1、正多邊形的軸對稱性

正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。

2、正多邊形的中心對稱性

邊數為偶數的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。

3、正多邊形的畫法

先用量角器或尺規等分圓,再做正多邊形。

十八、弧長和扇形面積

1、弧長公式

n°的圓心角所對的弧長l的計算公式為

2、扇形面積公式

其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長。

3、圓錐的側面積

其中l是圓錐的母線長,r是圓錐的地面半徑。

數學性質

數學性質是數學表觀和內在所具有的特徵,一種事物區別於其他事物的屬性。如:平行四邊形的性質:對邊平行,對邊相等,對角線互相平分,中心對稱圖形。

初中數學知識點

加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

減法:減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。

5. 九年級下冊數學圓知識點提綱

數學是一門很重要的學科,我們從小學到高中都會系統的去學習數學中的各個內容。這次我在這里給大家整理了九年級下冊數學圓知識點提綱,供大家閱讀參考。

目錄

九年級下冊數學圓知識點提綱

數學學習思維方法

數學學習方法

九年級下冊數學圓知識點提綱

1、圓是定點的距離等於定長的點的集合

2、圓的內部可以看作是圓心的距離小於半徑的點的集合

3、圓的外部可以看作是圓心的距離大於半徑的點的集合

4、同圓或等圓的半徑相等

5、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

6、和已知線段兩個端點的距離相等的點的軌跡,是這條線段的垂直平分線

7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

9、定理不在同一直線上的三點確定一個圓。

10、垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

11、推論1:

①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。

12、推論2:圓的兩條平行弦所夾的弧相等

13、圓是以圓心為對稱中心的中心對稱圖形

14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

16、定理:一條弧所對的圓周角等於它所對的圓心角的一半

17、推論:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

18、推論:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

19、推論:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

20、定理:圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

21、①直線L和⊙O相交d﹤r

②直線L和⊙O相切d=r

③直線L和⊙O相離d﹥r

22、切線的判定定理:經過半徑的外端並且垂直於這條半徑的直線是圓的切線

23、切線的性質定理:圓的切線垂直於經過切點的半徑

24、推論:經過圓心且垂直於切線的直線必經過切點

25、推論:經過切點且垂直於切線的直線必經過圓心

26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

27、圓的外切四邊形的兩組對邊的和相等

28、弦切角定理:弦切角等於它所夾的弧對的圓周角

29、推論:如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

30、相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等

31、推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項

32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

34、如果兩個圓相切,那麼切點一定在連心線上

35、①兩圓外離d﹥R+r

②兩圓外切d=R+r

③兩圓相交R-r﹤d﹤R+r(R﹥r)

④兩圓內切d=R-r(R﹥r)

⑤兩圓內含d﹤R-r(R﹥r)

36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

37、定理:把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

38、定理:

任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

39、正n邊形的每個內角都等於(n-2)×180°/n

40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

41、正n邊形的面積Sn=pr/2p表示正n邊形的周長,r為邊心距

42、正三角形面積√3a2/4a表示邊長

43、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此

k(n-2)180°/n=360°化為(n-2)(k-2)=4

44、弧長計算公式:L=n兀R/180

45、扇形面積公式:

S扇形=n兀R2/360=LR/2

外公切線長=d-(R+r)

<<<

數學學習思維 方法

1.比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

比較法要注意:

(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

(2)找聯系與區別,這是比較的實質。

(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。

(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。

(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。

2.公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是孩子學習數學必須學會和掌握的一種方法。但一定要讓孩子對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

3.邏輯法

邏輯是一切思考的基礎。 邏輯思維 ,是人們在認識過程中藉助於概念、判斷、推理等思維形式對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。邏輯思維,在解決邏輯推理問題時使用廣泛。

4. 逆向思維 法

逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種 思維方式 。敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。

5.分類法

根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。

分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。

<<<

數學 學習方法

1.注重預習培養自學能力

在預習的時候,應當把定理、定律、公式、常數、特定符號這些內容單獨匯集在一起,每抄錄一遍,則加深一次印象。上課的時候,老師講到這些地方時,應把自己預習時的理解和老師講的相對照,看自己有沒有理解錯的地方。預習可以用「一劃、二批、三試、四分」的預習方法。

一劃:就是圈劃知識要點,基本概念。

二批:就是把預習時的體會、見解以及自己暫時不能理解的內容,批註在書的空白地方。

三試:就是嘗試性地做一些簡單的練習,檢驗自己預習的效果。

四分:就是把自己預習的這節知識要點列出來,分出哪些是通過預習已掌握了的,哪些知識是自己預習不能理解掌握了的,需要在課堂學習中進一步學習。

2、把握課堂,提高學習效果

課堂學習是學習過程中最基本,最重要的環節,要堅持做到「五到」即耳到、眼到、口到、心到、手到。

手到:就是以簡單扼要的方法記下聽課的要點,思維方法,以備復習、消化、再思考,但要以聽課為主,記錄為輔;

耳到:專心聽講,聽老師如何講課,如何分析、如何歸納 總結 。另外,還要聽同學們的解答,看是否對自己有所啟發,特別要注意聽自己預習未看懂的問題;

口到:主動與老師、同學們進行合作、探究,敢於提出問題,並發表自己的看法,不要人雲亦雲;

眼到:就是一看老師講課的表情,手勢所表達的意思,看老師的演示實驗、板書內容,二看老師要求看的課本內容,把書上知識與老師課堂講的知識聯系起來;

心到:就是課堂上要認真思考,注意理解課堂的新知識,課堂上的思考要主動積極。關鍵是理解並能融匯貫通,靈活使用。對於老師講的新概念,應抓住關鍵字眼,變換角度去理解。

3、掌握練習方法,提高解答數學題的能力

數學的解答能力,主要通過實際的練習來提高。數學練習應注意以下幾點:

(1)、端正態度,充分認識到數學練習的重要性。實際練習不僅可以提高解答速度,掌握解答技能技巧,而且,許多的新問題常在練習中出現。

(2)、要有自信心與意志力。數學練習常有繁雜的計算,深奧的證明,自己應有充足的信心,頑強的意志,耐心細致的習慣。

(3)、要養成先思考,後解答,再檢查的良好習慣,遇到一個題,不能盲目地進行練習,無效計算,應先深入領會題意,認真思考,抓住關鍵,再作解答。解答後,還應進行檢查。

4、掌握 復習方法 ,提高數學綜合能力.

復習是記憶之母,對所學的知識要不斷地復習,復習鞏固應注意掌握以下方法。

(1).合理安排復習時間,「趁熱打鐵」,當天學習的功課當天必須復習,無論當天作業有多少,多難,都要鞏固復習。

(2).採用綜合復習方法,即通過找出知識的左右關系和縱橫之間的內在聯系,從整體上提高,綜合復習具體可分「三步走」:首先是統觀全局,瀏覽全部內容,通過喚起回憶,初步形成知識體系印象,其次是加深理解,對所學內容進行綜合分析,最後是整理鞏固,形成完整的知識體系。

(3).突破薄弱環節的復習方法.要多在薄弱環節上下功夫,加強鞏固好課本知識,只有突破薄弱環節,才利於從整體上提高數學綜合能力。

<<<


九年級下冊數學圓知識點提綱相關 文章 :

★ 九年級數學知識點總結

★ 初三數學主要知識點

★ 初三數學的知識點梳理

★ 九年級下冊數學知識點歸納

★ 九年級數學知識點北師大版

★ 初三數學知識點總結歸納

★ 蘇教版九年級數學知識點

★ 人教版九年級下數學復習提綱

★ 人教版九年級數學知識點總結

★ 初三數學基礎知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

6. 九年級數學圓這一章的全部知識點

1.圓的定義
圓的定義有兩個:
其一:平面上到定點 的距離等於定長的所有點所組成的圖形叫圓。
其二:平面上一條線段,繞它固定的一個端點O旋轉360°,它的另一端留下的軌跡叫圓。
2.圓的其他相關量
①圓心與半徑:(如定義)固定的端點O即為圓心,用字母 來表示,記作⊙O;定義中的定長即為半徑,用字母r表示;
②弦與直徑:連接圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓中最長的弦為直徑;
③圓弧:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧;
④圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;
⑤等圓:能夠重合的兩個圓叫做等圓。
3.垂徑定理及其推論
①定理
如果圓的一條直徑垂直於一條弦,那麼這條直徑平分這條弦,並且平分這條弦所對的兩條弧。
②推論(四條)
推論一:平分弦(不是直徑)的直徑垂直於這條弦,並且平分這條弦所對的兩條弧;
推論二:弦的垂直平分線經過圓心,並且平分這條弦所對的兩條弧;
推論三:平分弦所對的一條弧的直徑垂直平分這條弦,並且平分這條弦所對的另一條弧
推論四:在同圓或者等圓中,兩條平行弦所夾的弧相等。
4.圓心角與圓周角
(1)定義
①圓心角:頂點在圓心的角叫做圓心角;
②圓周角:頂點在圓上,且兩邊都與圓相交的角叫做圓周角。
(2)定理及推論
①圓心角
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
推論一:在同圓或等圓中,如果兩條弧相等,那麼它們所對的圓心角相等,所對的弦也相等;
推論二:在同圓或等圓中,如果兩條弦相等,那麼它們所對的圓心角相等,所對的弧也相等。
②圓周角
定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半。
推論一:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑;
推論二:在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等;
推論三:圓內接四邊形的對角互補。
5.點與圓的位置關系
(1)點和圓的位置關系
點和圓的位置關系相對較為簡單,可分為三種情況:圓內、圓上和圓外。
一般情況下,判斷點和圓的位置關系,以點到圓心的距離和圓半徑之間的大小為依據,假設⊙O的半徑為r,點P到圓心O的距離為d,則點P與⊙O的位置關系可表示如下:
點P 在⊙O 外 等價於d >r
點P 在⊙O 上 等價於d =r
點P 在⊙O 內 等價於d <r
(2)不在同一直線上的三個點確定一個圓
不在同一直線上的三個點確定一個圓。根據這一定理,我們可以經過任意三角形的三個頂點做一個圓,這個圓就叫做三角形的外接圓,外接圓的圓心是三角形三條邊垂直平分線的交點,叫做該三角形的外心。
(3)反證法
不是直接從命題的已知得出結論,而是假設命題的結論不成立,由此經過推理得出矛盾,由矛盾斷定所作假設不正確,從而得到原命題成立。這種證明方法就叫做反證法。
6.直線與圓的位置關系
直線與圓的位置關系可分為三種:相交、相切和相離,詳述如下:
(1)相交
直線和圓有兩個公共點,則直線與圓相交,這條直線叫做圓的割線。
(2)相切
直線和圓只有一個公共點,則直線與圓相切,該直線叫做圓的切線,該公共點叫做切點。
(3)相離
即直線和圓沒有公共點。
假設⊙O 的半徑為r ,直線l 到圓心O 的距離為d ,根據上述定義,可以得到:
直線l 和⊙O 相交 等價於d <r
直線l 和⊙O 相切 等價於d =r
直線l 和⊙O 相離 等價於d >r
7.關於切線的定理
(1)切線的定義
如果一條直線和圓只有一個公共點,那麼這條直線和圓相切,直線就叫做圓的切線,公共點即為切點。
(2)切線判定定理
經過半徑的外端並且垂直於這條半徑的直線是圓的切線。
(3)切線性質定理
圓的切線垂直於過切點的半徑。
(4)切線長
經過圓外一點做圓的切線,這點和切點之間的線段的長,叫做這點到圓的切線長。
(5)切線長定理
從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
8.三角形內切圓
與三角形各邊都相切的圓叫做三角形的內切圓,內切圓的圓心是三角形三條角平分線的交點,叫做三角形的內心。另外還需知道一點,即三角形的內心到三角形三邊的距離相等,也就是三角形內切圓半徑。
9.圓與圓的位置關系
圓與圓的位置關系主要可分為三種:相離、相切和相交,分述如下:
(1)相離
如果兩個圓沒有公共點,那麼就說這兩個圓相離;相離又分為外離和內含,兩圓內含有一種特殊情況即兩圓同心。
(2)相切
如果兩個圓只有一個公共點,那麼就說這兩個圓相切;相切又可分為外切和內切。
(3)相交
兩圓相交較為簡單,即如果兩個圓有兩個公共點,那麼就說這兩個圓相交。
10.正多邊形和圓
我們先來溫習一下什麼是正多邊形——各邊相等、各角也相等的多邊形,我們稱之為正多邊形。
正多邊形和圓的關系非常密切,只要把一個圓分成相等的一些弧,就可以作出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。
一個正多邊形的外接圓的圓心叫做這個正多邊形的中心,外接圓的半徑叫做正多邊形的半徑,正多邊形每一邊所對的圓心角叫做正多邊形的中心角,中心到正多邊形的一邊的距離叫做正多邊形的邊心距。
11.弧長和扇形的面積(一些特殊符號不好輸入,只好截圖了)
12.圓錐的側面積
要學習圓錐的相關面積的計算,先要了解一個概念——圓錐的母線:我們把連接圓錐頂點和底面圓周上任意一點的線段叫做圓錐的母線。同一圓錐所有母線都相等。
沿一條母線將圓錐側面剪開並展平,可以得到,圓錐的側面展開圖是一個扇形,而母線即為該扇形的半徑,圓錐底面圓的周長為圓錐側面展開後的扇形對應的弧長。
在上一期已經學習了扇形的面積與弧長的關系,即 ,有了這一關系式,關於圓錐的的側面積及全面積的一些列計算將迎刃而解。

向左轉|向右轉

7. 九上數學直角與圓的位置關系

九上數學直角與圓的位置關系如下:

1、直角三角形簡介:

直角三角形是一種特殊的三角形,其中包含一個90度的直角。直角三角形的性質使我們能夠研究其內部和與其他幾何形狀的關系。

6、圓與三角形的面積關系:

圓與三角形的位置關系還涉及到面積。一個圓可以被劃分成若干個扇形,而直角三角形可以被劃分成兩個直角三角形和一個半圓。通過計算這些圖形的面積,可以得到直角三角形與圓之間的面積關系。

7、實際應用:

直角三角形與圓的位置關系在實際生活中有廣泛的應用。例如,測量高樓大廈的高度,計算衛星軌道的參數,甚至在工程和建築中,都需要考慮直角三角形與圓的位置關系。