當前位置:首頁 » 基礎知識 » 小升初數學基礎知識
擴展閱讀
歌詞是你怎麼捨得我難過 2024-11-25 05:41:18
動漫公司是如何收費的 2024-11-25 05:33:35
美術基礎課程是哪些 2024-11-25 05:27:47

小升初數學基礎知識

發布時間: 2024-09-20 19:01:36

A. 小升初數學必考知識點

【 #小升初# 導語】小學數學是數學學習的基礎階段,在這個階段,家長一定要幫助孩子打好基礎。下面 無 為大家搜索整理了關於小升初數學必考知識點,歡迎閱讀學習,希望對大家有所幫助!

一、小學生數學法則知識歸類

(一)筆算兩位數加法,要記三條

1、相同數位對齊;

2、從個位加起;

3、個位滿10向十位進1。

(二)筆算兩位數減法,要記三條

1、相同數位對齊;

2、從個位減起;

3、個位不夠減從十位退1,在個位加10再減。

(三)混合運算計演算法則

1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;

2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;

3、算式里有括弧的要先算括弧裡面的。

(四)四位數的讀法

1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;

2、中間有一個0或兩個0隻讀一個零;

3、末位不管有幾個0都不讀。

(五)四位數寫法

1、從高位起,按照順序寫;

2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫0。

(六)四位數減法也要注意三條

1、相同數位對齊;

2、從個位減起;

3、哪一位數不夠減,從前位退1,在本位加10再減。

(七)一位數乘多位數乘法法則

1、從個位起,用一位數依次乘多位數中的每一位數;

2、哪一位上乘得的積滿幾十就向前進幾。

(八)除數是一位數的除法法則

1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;

2、除數除到哪一位,就把商寫在那一位上面;

3、每求出一位商,餘下的數必須比除數小。

(九)一個因數是兩位數的乘法法則

1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;

2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;

3、然後把兩次乘得的數加起來。

(十)除數是兩位數的除法法則

1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,

2、除到被除數的哪一位就在哪一位上面寫商;

3、每求出一位商,餘下的數必須比除數小。

(十一)萬級數的讀法法則

1、先讀萬級,再讀個級;

2、萬級的數要按個級的讀法來讀,再在後面加上一個萬字;

3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個零。

(十二)多位數的讀法法則

1、從高位起,一級一級往下讀;

2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上億或萬字;

3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。

(十三)小數大小的比較

比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。

(十四)小數加減法計演算法則

計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。

(十五)小數乘法的計演算法則

計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。

(十六)除數是整數除法的法則

除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。

(十七)除數是小數的除法運演算法則

除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。

(十八)解答應用題步驟

1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;

2、確定每一步該怎樣算,列出算式,算出得數;

3、進行檢驗,寫出答案。

(十九)列方程解應用題的一般步驟

1、弄清題意,找出未知數,並用X表示;

2、找出應用題中數量之間的相等關系,列方程;

3、解方程;

4、檢驗、寫出答案。

(二十)同分母分數加減的法則

同分母分數相加減,分母不變,只把分子相加減。

(二十一)同分母帶分數加減的法則

帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。

(二十二)異分母分數加減的法則

異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。

(二十三)分數乘以整數的計演算法則

分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。

(二十四)分數乘以分數的計演算法則

分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。

(二十五)一個數除以分數的計演算法則

一個數除以分數,等於這個數乘以除數的倒數。

(二十六)把小數化成百分數和把百分數化成小數的方法

把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;

把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。

(二十七)把分數化成百分數和把百分數化成分數的方法

把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;

把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。

二、小學數學口決定義歸類

1、什麼是圖形的周長?

圍成一個圖形所有邊長的總和就是這個圖形的周長。

2、什麼是面積?

物體的表面或圍成的平面圖形的大小叫做他們的面積。

3、加法各部分的關系:

一個加數=和-另一個加數

4、減法各部分的關系:

減數=被減數-差被減數=減數+差

5、乘法各部分之間的關系:

一個因數=積另一個因數

6、除法各部分之間的關系:

除數=被除數商被除數=商除數

7、角

(1)什麼是角?

從一點引出兩條射線所組成的圖形叫做角。

(2)什麼是角的頂點?

圍成角的端點叫頂點。

(3)什麼是角的邊?

圍成角的射線叫角的邊。

(4)什麼是直角?

度數為90的角是直角。

(5)什麼是平角?

角的兩條邊成一條直線,這樣的角叫平角。

(6)什麼是銳角?

小於90的角是銳角。

(7)什麼是鈍角?

大於90而小於180的角是鈍角。

(8)什麼是周角?

一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360.

8、(1)什麼是互相垂直?什麼是垂線?什麼是垂足?

兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。

(2)什麼是點到直線的距離?

從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。

9、三角形

(1)什麼是三角形?

有三條線段圍成的圖形叫三角形。

(2)什麼是三角形的邊?

圍成三角形的每條線段叫三角形的邊。

(3)什麼是三角形的'頂點?

每兩條線段的交點叫三角形的頂點。

(4)什麼是銳角三角形?

三個角都是銳角的三角形叫銳角三角形。

(5)什麼是直角三角形?

有一個角是直角的三角形叫直角三角形。

(6)什麼是鈍角三角形?

有一個角是鈍角的三角形叫鈍角三角形。

(7)什麼是等腰三角形?

兩條邊相等的三角形叫等腰三角形。

(8)什麼是等腰三角形的腰?

有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。

(9)什麼是等腰三角形的頂點?

兩腰的交點叫做等腰三角形的頂點。

(10)什麼是等腰三角形的底?

在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。

(11)什麼是等腰三角形的底角?

底邊上兩個相等的角叫等腰三角形的底角。

(12)什麼是等邊三角形?

三條邊都相等的三角形叫等邊三角形,也叫正三角形。

(13)什麼是三角形的高?什麼叫三角形的底?

從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。

(14)三角形的內角和是多少度?

三角形內角和是180.

10、四邊形

(1)什麼是四邊形?

有四條線段圍成的圖形叫四邊形。

(2)什麼是平等四邊形?

兩組對邊分別平行的四邊形叫做平行四邊形。

(3)什麼是平行四邊形的高?

從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。

(4)什麼是梯形?

只有一組對邊平行的四邊形叫做梯形。

(5)什麼是梯形的底?

在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。

(6)什麼是梯形的腰?

在梯形里,不平等的一組對邊叫梯形的腰。

(7)什麼是梯形的高?

從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。

(8)什麼是等腰梯形?

兩腰相等的梯形叫做等腰梯形。

11、什麼是自然數?

用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10是自然數(自然數都是整數)。

12、什麼是四捨五入法?

求一個數的近似數時,看被省略的尾數位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。

13、加法意義和運算定律

(1)什麼是加法?

把兩個數合並成一個數的運算叫加法。

(2)什麼是加數?

相加的兩個數叫加數。

(3)什麼是和?

加數相加的結果叫和。

(4)什麼是加法交換律?

兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。

14、什麼是減法?

已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。

15、什麼是被減數?什麼是減數?什麼叫差?

在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。

16、加法各部分間的關系:

和=加數+加數加數=和-另一加數

17、減法各部分間的關系:

差=被減數-減數減數=被減數-差被減數=減數+差

18、乘法

(1)什麼是乘法?

求幾個相同加數的和的簡便運算叫乘法。

(2)什麼是因數?

相乘的兩個數叫因數。

(3)什麼是積?

因數相乘所得的數叫積。

(4)什麼是乘法交換律?

兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。

(5)什麼是乘法結合律?

三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。

19、除法

(1)什麼是除法?

已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。

(2)什麼是被除數?

在除法中,已知的積叫被除數。

(3)什麼是除數?

在除法中,已知的一個因數叫除數。

(4)什麼是商?

在除法中,求出的未知因數叫商。

20、乘法各部分的關系:

積=因數因數一個因數=積另一個因數

21、(1)除法各部分間的關系:

商=被除數除數除數=被除數商

(2)有餘數的除法各部分間的關系:

被除數=商除數+余數

22、什麼是名數?

通常量得的數和單位名稱合起來的數叫名數。

23、什麼是單名數?

只帶有一個單位名稱的數叫單名數。

24、什麼是復名數?

有兩個或兩個以上單位名稱的數叫復名數。

25、什麼是小數?

仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾的數叫小數。

26、什麼是小數的基本性質?

小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。

27、什麼是有限小數?

小數部分的位數是有限的小數叫有限小數。

28、什麼是無限小數?

小數部分的位數是無限的小數叫無限小數。

29、什麼是循環節?

一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。

30、什麼是純循環小數?

循環節從小數第一位開始的叫純循環小數。

31、什麼是混循環小數?

循環節不是從小數部分第一位開始的叫做混循環小數。

32、什麼是四則運算?

我們把學過的加、減、乘、除四種運算統稱四則運算。

33、什麼是方程?

含有未知數的等式叫方程。

34、什麼是解方程?

求方程解的過程叫解方程。

35、什麼是倍數?什麼叫約數?

如果a能被b整除,a就是b的倍數,b就叫a的約數(或a的因數)。

36、什麼樣的數能被2整除?

個位上是0、2、4、6、8的數都能被2整除。

37、什麼是偶數?

能被2整除的數叫偶數。

38、什麼是奇數?

不能被2整除的數叫奇數。

39、什麼樣的數能被5整除?

個位上是0或5的數能被5整除。

40、什麼樣的數能被3整除?

一個數的各位上的和能被3整除,這個數就能被3整除。

41、什麼是質數(或素數)?

一個數如果只有1和它本身兩個約數,這樣的數叫質數。

42、什麼是合數?

一個數除了1和它本身還有別的約數,這樣的數叫合數。

43、什麼是質因數?

每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。

44、什麼是分解質因數?

把一個合數用質因數相乘的形式表示出來叫做分解質因數。

45、什麼是公約數?什麼叫公約數?

幾個數公有的約數叫公約數。其中的一個叫公約數。

46、什麼是互質數?

公約數只有1的兩個數叫互質數。

47、什麼是公倍數?什麼是最小公倍數?

幾個數公有的倍數叫這幾個數的公倍數。其中最小的一個叫這幾個數的最小公倍數。

48、分數

(1)什麼是分數?

把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。

(2)什麼是分數線?

在分數里中間的橫線叫分數線。

(3)什麼是分母?

分數線下面的部分叫分母。

(4)什麼是分子?

分數線上面的部分叫分子。

(5)什麼是分數單位?

把單位1平均分成若干份,表示其中的一份叫分數單位。

49、怎麼比較分數大小?

(1)分母相同的兩個分數,分子大的分數比較大。

(2)分子相同的兩個分數,分母小的分子比較大。

(3)什麼是真分數?

分子比分母小的分數叫真分數。

(4)什麼是假分數?

分子比分母大或者分子和分母相等的分數叫假分數。

(5)什麼是帶分數?

由整分數和真分數合成的數通常叫帶分數。

(6)什麼是分數的基本性質?

分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。

(7)什麼是約分?

把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。

(8)什麼是最簡分數?

分子、分母是互質數的分數叫最簡分數。

B. 小升初數學知識考點歸納

歸納和梳理教材知識結構,記清概念,基礎夯實。數學≠做題,千萬不要忽視最基本的概念、公理、定理和公式的記憶。接下來是我為大家整理的小升初數學知識考點歸納,希望大家喜歡!

小升初數學知識考點歸納一

抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那麼必有一個抽屜中至少放有2個物體。

例:把4個物體放在3個抽屜里,也就是把4分解成三個整數的和,那麼就有以下四種情況:

①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

觀察上面四種放物體的方式,我們會發現一個共同特點:總有那麼一個抽屜里有2個或多於2個物體,也就是說必有一個抽屜中至少放有2個物體。

抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那麼必有一個抽屜至少有:

①k=[n/m ]+1個物體:當n不能被m整除時。

②k=n/m個物體:當n能被m整除時。

理解知識點:[X]表示不超過X的整數。

例[4.351]=4;[0.321]=0;[2.9999]=2;

關鍵問題:構造物體和抽屜。也就是找到代表物體和抽屜的量,而後依據抽屜原則進行運算。

小升初數學知識考點歸納二

平均數問題

在小升初奧數中平均數問題,有一些基本的公式和演算法需要大家掌握,具體如下:

基本公式:①平均數=總數量÷總份數

總數量=平均數×總份數

總份數=總數量÷平均數

②平均數=基準數+每一個數與基準數差的和÷總份數

基本演算法:

①求出總數量以及總份數,利用基本公式①進行計算.

②基準數法:根據給出的數之間的關系,確定一個基準數;一般選與所有數比較接近的數或者中間數為基準數;以基準數為標准,求所有給出數與基準數的差;再求出所有差的和;再求出這些差的平均數;最後求這個差的平均數和基準數的和,就是所求的平均數,具體關系見基本公式②

小升初數學知識考點歸納三

經濟問題

利潤的百分數=(賣價-成本)÷成本×100%;

賣價=成本×(1+利潤的百分數);

成本=賣價÷(1+利潤的百分數);

商品的定價按照期望的利潤來確定;

定價=成本×(1+期望利潤的百分數);

本金:儲蓄的金額;

利率:利息和本金的比;

利息=本金×利率×期數;

含稅價格=不含稅價格×(1+增值稅稅率);

小升初數學知識考點歸納四

雞兔同籠

基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;

基本思路:

①假設,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):

②假設後,發生了和題目條件不同的差,找出這個差是多少;

③每個事物造成的差是固定的,從而找出出現這個差的原因;

④再根據這兩個差作適當的調整,消去出現的差。

基本公式:

①把所有雞假設成兔子:雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數)

②把所有兔子假設成雞:兔數=(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)

關鍵問題:找出總量的差與單位量的差。

小升初數學知識考點歸納五

量的計算單位及進率歸類

1、長度計量單位及進率:

千米(公里)、米、分米、厘米、毫米

1千米=1公里1千米=1000米

1米=10分米1分米=10厘米

1厘米=10毫米

2、面積計量單位及進率:

平方千米、公頃、平方米、平方分米、平方厘米

1平方千米=100公頃

1平方千米=1000000平方米

1公頃=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

3、體積容積計量單位及進率:

立方米、立方分米、立方厘米、升、毫升

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升1立方厘米=1毫升

4、質量單位及進率:

噸、千克、公斤、克

1噸=1000千克

1千克=1公斤

1千克=1000克

5、時間單位及進率:

世紀、年、月、日、小時、分、秒

1世紀=100年1年=12月

1天=24小時1小時=60分

1分=60秒

(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,閏年2月29天)

常用計算公式表

1、長方形面積

=長×寬,計算公式S=ab

2、正方形面積

=邊長×邊長,計算公式S=a×a=a2

3、長方形周長

=(長+寬)×2,計算公式C=(a+b)×2


小升初數學知識考點歸納相關 文章 :

1. 小升初數學考試知識點整理

2. 小升初數學知識點匯總與常見易錯點

3. 小升初考試必備數學一到六年級的知識點

4. 小升初數學備考必知:常考知識點大全

5. 小升初數學考試必備知識點與易錯點

6. 小升初數學必備常考10大難點匯編

7. 小升初必背100個科普知識考點

8. 小升初數學必須掌握的知識點有哪些

9. 小升初數學必備易錯知識點與公式大全

C. 必讀小升初數學知識點梳理

必讀小升初數學知識點梳理

一、關於數學命題趨勢的分析

縱觀各級各類考試,數學命題有以下三個方面的趨勢:

(一)綜合性 主要考查學生的"雙基",以及知識的綜合運用能力。

如:小學數學的分數、小數的四則混合運算。運算中要注意:小數的相加、相減、相除三類運算中的小數點對齊問題,乘法運算中的乘數與被乘數共有幾位小數,所得的積就有幾位小數,不夠時要補零。分數的加減運算要注意通分(先找出分母的最小公倍數,再將分子、分母同時擴大相同的倍數。)帶分數相加減,應將整數、分數部分分別相加減,然後將所得的結果進行合並,如分數部分不夠減,要考慮向整數部分"借"。分數運算中"約分"的思想是化繁為簡的理論基礎,要將它和關系"重新組合"、"拆項"等結合起來,加以訓練。

(二)延續性 所謂"延續性"是指相關數學知識在以後的學習中是否會重新"遭遇"。從數學體系的角度來看,"函數"的思想、"立體感"的建立等都是非常重要的。這些內容在小學數學中往往表現為應用題的列式,圓、圓柱、圓錐、長方體、正方體的識圖、運算與轉化等。

(三)變通性 所謂"變通性"是指學生對相關數學知識的靈活運算的能力。常見的有"發現新規律,定義新運算的能力"、"優化設計(最大、最小)的能力"、"分析推理(執因索果)的能力"、以及"公式的變形與迭代(包括單位換算、數的進制、手錶問題等)的能力"。

二、關於數學應用問題的歸類

小學數學的應用題往往是概念、公式的應用。

小學數學常用的一些概念、公式,應加以記憶。如:存入銀行的錢叫做本金;取款時銀行多付的錢叫做利息;購買建設債券和儲蓄在實質上是一樣的,是支援國家建設的另一種方式,只是債券的利率一般高於定期儲蓄;"一成"就是十分之一,改寫成百分數就是10%;表示兩個比相等的式子叫做比例;比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項;在比例里,兩個外項的積等於兩個內項的積(比例的基本性質);比例共有四項,如果知道其中的任何三項,就可以求出這個比例中的另外一個未知項。求比例中的未知項,叫做解比例,解比例要根據比例的基本性質來解。圖上距離和實際距離的比叫做比例尺;一種量變化,另一種量也隨著變化,這兩種量是兩種相關聯的量;圓的周長公式:C=2Π r或C=ΠD;圓柱的側面積=底面周長×高;長方體的體積=長×寬×高=底面積×高;長方形的面積=長×寬; 正方形的面積=邊長×邊長;平行四邊形的面積=底×高;三角形的面積=1/2 ×底×高;梯形的面積:= 1/2(上底+下底)×高;圓的面積=∏×R×R;長方體、正方體和圓柱的體積公式可以統一寫成:"底面積×高"等等。

(一)分數、百分數的應用題 "分率(百分率、利率、折扣)"的概念是解題的關鍵,其中標准量"1"的選取是解題突破口。

(二)工程問題 工程問題要弄清工作量、工作效率、工作時間三者之間的關系:工作量=工作效率×工作時間;工作效率= 工作量/工作時間;工作時間=工作量/工作效率 ;總工作量=各分工作量之和

(三)行程問題 從表層意義上是考查學生對路程、時間、速度三者關系的認識,從深層次的角度分析,實際上是檢查學生的變通能力,因為需要考慮的不僅僅是"路程=時間×速度;時間=路程 /速度;速度=路程/時間 ",往往還涉及到時間、地點和方向等諸多要素,因此,解這類題目的關鍵是認准哪些是"變化的條件",如何在解題中准確運用"不變的公式"。

(四)濃度問題 (不作重點要求) 這類題目要求了解的關系式: 溶液=溶質+ 溶劑 ;濃度=溶質 / 溶液;溶液= 溶質 / 濃度;溶質= 溶液×濃度

三、簡單的幾何問題

面積、體積問題 主要考慮以下內容:

平行四邊形面積計算公式怎樣得到的?三角形和梯形面積計算公式怎樣得到的?圓的面積計算公式呢?思索正方形面積是怎樣計算的?為什麼?

提示:我們在得到長方形面積計算公式後,可以通過剪、拼等方法,對圖形進行轉化,從而得出相應圖形的面積計算公式。

求表面積就是求立體圖形的什麼?(所有面的面積總和)長方體表面積是怎樣算的?這類題還有什麼簡便的方法?圓柱體表面積是怎樣算的?

提示:立體圖形的表面積是所有面的面積的總和,所以要先求各部分的面積,然後相加。長方體和圓柱體的表面積都可以用側面積加兩個底面積。

求長方體和圓柱的體積有什麼相同的地方?

提示:長方體其實也是一個柱體,長方體和圓柱體的體積,其實都是用底面積乘以高。

圓柱(錐) 是由兩個完全一樣的圓和一個曲面圍成的,圓錐是由一個圓和一個曲面圍成的。要認識圓柱的`底面、側面和高;認識圓錐的底面和高。要知道圓柱側面展開的圖形,理解求圓柱的側面積、表面積的計算方法,會計算圓柱體的側面積和表面積,能根據實際情況靈活應用計算方法,並認識取近似數的進一法。理解求圓柱、圓錐體積的計算公式,能說明體積公式的推導過程,會運用公式計算體積、容積,解決有關的簡單實際問題。

四、簡單的統計

簡單的統計表、統計圖、還學過求平均數和求百分數等都是統計初步知識。

在統計工作中除了對數據進行分類整理用統計表來表示以外,有時還可以用統計圖來表示。常見統計圖有以下三類:條形統計圖;折線統計圖;扇形統計圖。

要認識統計圖,並明確統計圖的特點和作用,經歷"收集、整理數據和用統計圖表示數據、整理結果"過程。能根據繪制出的統計圖,分析數據所反映的一些簡單事實,能作出一些簡單的推理與判斷,進一步認識統計是解決實際問題的一種策略和方法。在學習統計知識的同時,感受數學與生活的聯系及其在生活中的應用。

求平均數的關鍵,是要先弄清被平均的數量是什麼,總數是多少;以及要求的平均數是按照什麼平均的,要平均分成多少份等等。

掌握一些與百分數有關的概念,如:發芽率,出勤率,成活率,利息等。了解有關利息的初步知識,知道"本金"、"利息"、"利率"的含意,會利用利息的計算公式進行一些有關利息的簡單計算。理解成數的意義,知道它在實際生產生活中的簡單應用,會進行一些簡單計算。稅收的計算也是百分數的一種具體應用。了解什麼是個人所得稅,怎樣計算個人所得稅? 什麼是成活率?它的計算公式是什麼?

;

D. 整數和小數小升初數學必考知識點

整數和小數小升初數學必考知識點

在平時的學習中,大家都沒少背知識點吧?知識點就是一些常考的內容,或者考試經常出題的地方。你知道哪些知識點是真正對我們有幫助的嗎?以下是我為大家收集的整數和小數小升初數學必考知識點,歡迎閱讀,希望大家能夠喜歡。

整數和小數小升初數學必考知識點1

1.最小的一位數是1,最小的自然數是0。

2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4.小數的分類:小數、有限小數、無限循環小數、無限小數、無限不循環小數、

5.整數和小數都是按照十進制計數法寫出的數。

6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

整數和小數小升初數學必考知識點2

1 簡單應用題

(1) 簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。

(2) 解題步驟:

a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。

b選擇演算法和列式計算:這是解答應用題的中心工作。從題目中告訴什麼,要求什麼著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進行解答並標明正確的單位名稱。

C檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。

2 復合應用題

(1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。

(2)含有三個已知條件的兩步計算的應用題。

求比兩個數的和多(少)幾個數的應用題。

比較兩數差與倍數關系的應用題。

(3)含有兩個已知條件的兩步計算的應用題。

已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。

已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。

(4)解答連乘連除應用題。

(5)解答三步計算的應用題。

(6)解答小數計算的應用題:小數計算的加法、減法、乘法和除法的應用題,他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。

d答案:根據計算的結果,先口答,逐步過渡到筆答。

( 3 ) 解答加法應用題:

a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。

b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。

(4 ) 解答減法應用題:

a求剩餘的應用題:從已知數中去掉一部分,求剩下的部分。

-b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。

c求比一個數少幾的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數是多少。

(5 ) 解答乘法應用題:

a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。

b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。

( 6) 解答除法應用題:

a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。

b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。

C 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。

d已知一個數的幾倍是多少,求這個數的應用題。

(7)常見的數量關系:

總價= 單價×數量

路程= 速度×時間

工作總量=工作時間×工效

總產量=單產量×數量

3典型應用題

具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。

(1)平均數問題: 平均數是等分除法的發展。

解題關鍵:在於確定總數量和與之相對應的總份數。

算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。

加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。

數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。

差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。

數量關系式:(大數-小數)÷2=小數應得數最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。

例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。

分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)

(2) 歸一問題: 已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。

根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。

根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。

一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」

兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」

正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。

反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。

解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。

數量關系式:單一量×份數=總數量(正歸一)

總數量÷單一量=份數(反歸一)

例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?

分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)歸總問題: 是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。

特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。

數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量單位數量×單位個數÷另一個單位數量= 另一個單位數量。

例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?

分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差問題: 已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。

解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。

解題規律:(和+差)÷2 = 大數大數-差=小數

(和-差)÷2=小數和-小數= 大數

例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?

分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)

(5)和倍問題: 已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。

解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。

解題規律:和÷倍數和=標准數標准數×倍數=另一個數

例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?

分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。

列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)

(6)差倍問題: 已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。

解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。

例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?

分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。

(7)行程問題: 關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。

解題關鍵及規律:

同時同地相背而行:路程=速度和×時間。

同時相向而行:相遇時間=速度和×時間

同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。

同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。

例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?

分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。

已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)

(8)流水問題: 一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。

船速:船在靜水中航行的速度。

水速:水流動的速度。

順水速度:船順流航行的速度。

逆水速度:船逆流航行的速度。

順速=船速+水速

逆速=船速-水速

解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。

解題規律:船行速度=(順水速度+ 逆流速度)÷2

流水速度=(順流速度逆流速度)÷2

路程=順流速度× 順流航行所需時間

路程=逆流速度×逆流航行所需時間

例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?

分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。

(9) 還原問題: 已知某未知數,經過一定的四則運算後所得的`結果,求這個未知數的應用題,我們叫做還原問題。

解題關鍵:要弄清每一步變化與未知數的關系。

解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。

根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。

解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。

例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?

分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)

一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。

(10)植樹問題: 這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。

解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。

解題規律:沿線段植樹

棵樹=段數+1棵樹=總路程÷株距+1

株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)

沿周長植樹

棵樹=總路程÷株距

株距=總路程÷棵樹

總路程=株距×棵樹

例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。

分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈虧問題: 是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。

解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。

解題規律:總差額÷每人差額=人數

總差額的求法可以分為以下四種情況:

第一次多餘,第二次不足,總差額=多餘+ 不足

第一次正好,第二次多餘或不足 ,總差額=多餘或不足

第一次多餘,第二次也多餘,總差額=大多餘-小多餘

第一次不足,第二次也不足, 總差額= 大不足-小不足

例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?

分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年齡問題: 將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。

解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。

例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?

分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)雞兔問題: 已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題

解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。

解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數

兔子只數=(總腿數-2×總頭數)÷2

如果假設全是兔子,可以有下面的式子:

雞的只數=(4×總頭數-總腿數)÷2

兔的頭數=總頭數-雞的只數

例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?

兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)

雞的只數 50-35=15 (只)

整數和小數小升初數學必考知識點3

1.分數的意義:把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。

2.分數單位:把單位「1」平均分成若干份,表示其中一份的數,叫做分數單位。

3.分數和除法的聯系:分數的分子就是除法中的被除數,分母就是除法中的除數。

分數和小數的聯系:小數實際上就是分母是10、100、1000……的分數。

分數和比的聯系:分數的分子就是比的前項,分數的分母就是比的後項。

4.分數的分類:分數可以分為真分數和假分數。

5.真分數:分子小於分母的分數叫做真分數。真分數小於1。

假分數:分子大於或等於分母的分數叫做假分數。假分數大於或者等於1。

6.最簡分數:分子與分母互質的分數叫做最簡分數。

7.分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。

8.這樣的分數可以化成有限小數:前提是這

個分數要是最簡分數,如果分母只含有2、5這2個質因數,這樣的分數就能化成有限小數。

9.百分數:表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫做百分率或者百分比。百分數通常用「%」來表示。

整數和小數小升初數學必考知識點4

升初數學運演算法則常考知識點

運演算法則

1. 整數加法計演算法則:

相同數位對齊,從低位加起,哪位上的數相加滿,就向前位進。

2. 整數減法計演算法則:

相同數位對齊,從低位加起,哪位上的數不夠減,就從它的前位退作,和本位上的數合並

3. 整數乘法計演算法則:

先個因數每位上的數分別去乘另個因數各個數位上的數,因數哪位上的數去乘,乘得的數的末尾就對齊哪位,然後把各次乘得的數加起來。

4. 整數除法計演算法則:

先從被除數的位除起,除數是位數,就看被除數的前位; 如果不夠除,就多看位,除到被除數的哪位,商就寫在哪位的上。如果哪位上不夠商1,要補「0」佔位。每次除得的余數要於除數。

5. 數乘法法則:

先按照整數乘法的計演算法則算出積,再看因數中共有位數,就從積的右邊起數出位,點上數點;如果位數不夠,就「0」補。

6. 除數是整數的數除法計演算法則:

先按照整數除法的法則去除,商的數點要和被除數的數點對齊;如果除到被除數的末尾仍有餘數,就在余數後添「0」,再繼續除。

7. 除數是數的除法計演算法則:

先移動除數的數點,使它變成整數,除數的數點也向右移動位(位數不夠的補「0」),然後按照除數是整數的除法法則進計算。

8. 同分母分數加減法計演算法:同分母分數相加減,只把分相加減,分母不變。

9. 異分母分數加減法計演算法:先通分,然後按照同分母分數加減法的的法則進計算。

10. 帶分數加減法的計演算法:整數部分和分數部分分別相加減,再把所得的數合並起來。

11. 分數乘法的計演算法則:分數乘整數,分數的分和整數相乘的積作分,分母不變;分數乘分數,分相乘的積作分,分母相乘的積作分母。

12. 分數除法的計演算法則:甲數除以數(0除外),等於甲數乘數的倒數。升初數學整數和數的應知識點整數和數的應

簡單應題

(1) 簡單應題:只含有種基本數量關系,或步運算解答的應題,通常叫做簡單應題。

a 審題理解題意:了解應題的內容,知道應題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明題中每句話的意思。也可以復述條件和問題,幫助理解題意。

b選擇演算法和列式計算:這是解答應題的中作。從題中告訴什麼,要求什麼著,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進解答並標明正確的單位名稱。

C檢驗:就是根據應題的條件和問題進檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。

2 復合應題

(1)有兩個或兩個以上的基本數量關系組成的,兩步或兩步以上運算解答的應題,通常叫做復合應題。

(2)含有三個已知條件的兩步計算的應題。求兩個數的和多(少)個數的應題。較兩數差與倍數關系的應題。

(3)含有兩個已知條件的兩步計算的應題。已知兩數相差多少(或倍數關系)與其中個數,求兩個數的和(或差)。已知兩數之和與其中個數,求兩個數相差多少(或倍數關系)。

(4)解答連乘連除應題。

(5)解答三步計算的應題。

(6)解答數計算的應題:數計算的加法、減法、乘法和除法的應題,他們的數量關系、結構、和解題式都與正式應題基本相同,只是在已知數或未知數中間含有數。

(2) 解題步驟:

d答案:根據計算的結果,先答,逐步過渡到筆答。

( 3 ) 解答加法應題:

a求總數的應題:已知甲數是多少,數是多少,求甲兩數的和是多少。

b求個數多的數應題:已知甲數是多少和數甲數多多少,求數是多少。

(4 ) 解答減法應題:

a求剩餘的應題:從已知數中去掉部分,求剩下的部分。

b求兩個數相差的多少的應題:已知甲兩數各是多少,求甲數數多多少,或數甲數少多少。

c求個數少的數的應題:已知甲數是多少,,數甲數少多少,求數是多少。

(5 ) 解答乘法應題:

a求相同加數和的應題:已知相同的加數和相同加數的個數,求總數。

b求個數的倍是多少的應題:已知個數是多少,另個數是它的倍,求另個數是多少。

( 6) 解答除法應題:

a把個數平均分成份,求每份是多少的應題:已知個數和把這個數平均分成份的,求每份是多少。

b求個數包含個另個數的應題:已知個數和每份是多少,求可以分成份。

C 求個數是另個數的的倍的應題:已知甲數數各是多少,求較數是較數的倍。

d已知個數的倍是多少,求這個數的應題。

(7)常見的數量關系:

總價= 單價×數量

路程= 速度×時間

作總量=作時間×效

總產量=單產量×數量

;

E. 小升初數學:基礎知識點整理

小升初數學:基礎知識點整理

必背定義、定理公式

三角形的面積=底高2。 公式S= ah2

正方形的面積=邊長邊長 公式S= aa

長方形的面積=長寬 公式S= ab

平行四邊形的面積=底高 公式S= ah

梯形的面積=(上底+下底)高2 公式S=(a+b)h2

內角和:三角形的內角和=180度。

長方體的體積=長寬高 公式:V=abh

長方體(或正方體)的體積=底面積高 公式:V=abh

正方體的體積=棱長棱長棱長 公式:V=aaa

圓的'周長=直徑 公式:L=r

圓的面積=半徑半徑 公式:S=r2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=rh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2r2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面積高。公式:V=1/3Sh

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數的乘法則:用分子的積做分子,用分母的積做分母。

分數的除法則:除以一個數等於乘以這個數的倒數。

;

F. 小升初考試必備數學一到六年級的知識點

小升初數學考的知識點是一到六年級的知識點,整理出不同年級的小學數學重要知識點,對於備考很有用,我在這里整理了相關資料,希望能幫助到那您。

一年級的知識重點

1數與計算

(1)20以內數的認識,加法和減法。

數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題

(2)100以內數的認識。

加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。

兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。

2量與計量

鍾面的認識(整時)。人民幣的認識和簡單計算。

3幾何初步知識

長方體、正方體、圓柱和球的直觀認識。

長方形、正方形、三角形和圓的直觀認識。

4應用題

比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)

5實踐活動

選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。

二年級的知識重點

1數與計算

(1)兩位數加、減兩位數。兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。

(2)表內乘法和表內除法。乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。

(3)萬以內數的讀法和寫法。數數。百位、千位、萬位。數的讀法、寫法和大小比較。

(4)加法和減法。加法,減法。連加法。加法驗算,用加法驗算減法。

(5)混合運算。先乘除後加減。兩步計算式題。小括弧。

2量與計量

時、分、秒的認識。

米、分米、厘米的認識和簡單計算。

千克(公斤)的認識。

3幾何初步知識

直線和線段的初步認識。角的初步認識。直角。

4應用題

加法和減法一步計算的應用題。乘法和除法一步計算的應用題。比較容易的兩步計算的應用題。

5實踐活動

與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。

三年級的知識重點

1數與計算

(1)一位數的乘、除法。

一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。

(2)兩位數的乘、除法。

一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。

(3)四則混合運算。

兩步計算的式題。小括弧的使用。

(4)分數的初步認識。

分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。

2量與計量

千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。

3幾何初步知識

長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。

4應用題常見的數量關系。

解答兩步計算的應用題。

5實踐活動

聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。

四年級的知識重點

1數與計算

(1)億以內數的讀法和寫法。

計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。

(2)加法和減法。

加法,減法。

接近整十、整百數的加、減法的簡便演算法。

加、減法算式中各部分之間的關系。求未知數x。

(3)乘、除數是三位數的乘、除法。

乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。

乘、除計算的簡單估算。

乘數接近整十、整百的簡便演算法。

乘、除法算式中各部分之間的關系。求未知數x。

(4)四則混合運算。

中括弧。三步計算的式題。

(5)整數及其四則運算的關系和運算定律。

自然數與整數。十進制計數法。讀法和寫法。

四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。

運算定律。簡便運算。

(6)小數的意義、性質,加法和減法。

小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值加法和減法。加法運算定律推廣到小數。

2量與計量

年、月、日。平年、閏年。世紀。24時計時法。

角的度量。

面積單位。

3幾何初步知識

直線的測定。測量距離(工具測、步測、目測)。

射線。直角、銳角、鈍角、平角、*周角。垂線。畫垂線。平行線。畫平行線。

三角形的特徵。

三角形的內角和。

4統計初步知識

簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。

5應用題列綜合算式

解答比較容易的三步計算的應用題。

五年級的知識重點

1計算

小數乘法,小數除法,簡易方程,觀察物體,多邊形的面積,統計與可能性,數學廣角和數學綜合運用等。

在前面學習整數四則運算和小數加、減法的基礎上,繼續培養學生小數的四則運算能力。

2方程

用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。

3空間與物體

在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置。

4圖形的轉換

探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。

5統計與概率

教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性。

6平均數

理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。

7實際應用

通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。

六年級的知識重點

1數與計算

(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。

(2)分數四則混合運算,分數四則混合運算。

(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。

2比和比例

比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。

3幾何初步知識

圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。

4統計初步知識

統計表,條形統計圖,折線統計圖,扇形統計圖。

5應用題

分數四則應用題(包括工程問題),百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算),比例尺,按比例分配。

6實踐活動

聯系學生所接觸到的社會情況組織活動,例如就家中的卧室,畫一個平面圖。

G. 小升初數學基礎知識:什麼叫約分

小升初數學基礎知識:什麼叫約分

在長沙的備考過程中,數學科目需要記憶的知識雖然不多,但往往差之毫釐失之千里。所以在備考數學的過程中,大家一定要把基礎知識和公式准確的.記憶下來。整理了長沙階段數學必背的基礎知識,供學生參考。

什麼叫約分?

意義:把一個分數化成和它相等,但分子、分母都比較小的分數,叫做約分(rection of a fraction)。 (即把一個分數的分子、分母同時除以公因數,分數的值不變,這個過程叫約分。)

最簡分數:分子、分母是互質數(分母不是1)的分數,叫做最簡分數(又叫既約分數)。

注意:約分時盡量用口算,一般用分子和把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分.分母的公約數(1除外) 去除分數的分子和分母;通常要除到得出最簡分數為止。

(除過的數均劃掉,如本例中的6、12、30、15)

約分是一定要注意要找它的公約數,也就是分子和分母的公約數,不能只把分母化簡或者分子化簡,雙數的公約數肯定有2,所以你可以先除以2,在慢慢除,然後將你所有除的數加起來就是他們的最大公約數。

把分數化成最簡分數的過程就叫約分。

;

H. 小升初一至六年級數學知識點整理

水滴石穿,繩鋸木斷。備考小升初考試 ,也需要一點點積累才能到達好的效果,下面是我為大家帶來的有關小升初一至 六年級數學 知識點整理,希望大家喜歡。

▼▼目錄▼▼

1-6年級數學知識體系

必背定義、定理公式

小升初算術知識點

數量關系計算公式方面

一般運算規則

小升初數學知識點: 1-6年級知識體系

小學一年級九九乘法口訣表。學會基礎加減乘。

小學二年級完善乘法口訣表,學會除混合運算,基礎幾何圖形。

小學三年級學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。

小學四年級線角自然數整數,素因數梯形對稱,分數小數計算。

小學五年級分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。

小學六年級比例百分比概率,圓扇圓柱及圓錐。

>>>

小升初數學知識點: 必背定義、定理公式

三角形的面積=底×高÷2。公式S=a×h÷2

正方形的面積=邊長×邊長公式S=a×a

長方形的面積=長×寬公式S=a×b

平行四邊形的面積=底×高公式S=a×h

梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的體積=長×寬×高公式:V=abh

長方體(或正方體)的體積=底面積×高公式:V=abh

正方體的體積=棱長×棱長×棱長公式:V=aaa

圓的周長=直徑×π公式:L=πd=2πr

圓的面積=半徑×半徑×π公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數的乘法則:用分子的積做分子,用分母的積做分母。

分數的除法則:除以一個數等於乘以這個數的倒數。

>>>

小升初數學知識點: 算術方面

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

3、乘法交換律:兩數相乘,交換因數的位置,積不變。

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5

6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。

簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。

等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

8、什麼叫方程式?答:含有未知數的等式叫方程式。

9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。

學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

15、分數除以整數(0除外),等於分數乘以這個整數的倒數。

16、真分數:分子比分母小的分數叫做真分數。

17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

20、一個數除以分數,等於這個數乘以分數的倒數。

21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

>>>

小升初數學知識點: 數量關系計算公式方面

1、單價×數量=總價

2、單產量×數量=總產量

3、速度×時間=路程

4、工效×時間=工作總量

5、加數+加數=和

一個加數=和+另一個加數

被減數-減數=差

減數=被減數-差

被減數=減數+差

因數×因數=積

一個因數=積÷另一個因數

被除數÷除數=商

除數=被除數÷商

被除數=商×除數

有餘數的除法:被除數=商×除數+余數

一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1噸=1000千克

1千克=1000克=

1公斤=1市斤

1公頃=10000平方米。

1畝=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3

比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。

10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y

12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y

百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。

把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

15、要學會把小數化成分數和把分數化成小數的化發。

16、公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中的一個,叫做公約數。)

17、互質數:公約數只有1的兩個數,叫做互質數。

18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用公約數)

21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。

分數計算到最後,得數必須化成最簡分數。

個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3.141414

32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。

如3.141592654

33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3.141592654……

34、什麼叫代數?代數就是用字母代替數。

35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x=ab+c

>>>

小升初數學知識點: 一般運算規則

1每份數×份數=總數

總數÷每份數=份數

總數÷份數=每份數

21倍數×倍數=幾倍數

幾倍數÷1倍數=倍數

幾倍數÷倍數=1倍數

3速度×時間=路程

路程÷速度=時間

路程÷時間=速度

4單價×數量=總價

總價÷單價=數量

總價÷數量=單價

5工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

6加數+加數=和

和-一個加數=另一個加數

7被減數-減數=差

被減數-差=減數差+減數=被減數

8因數×因數=積

積÷一個因數=另一個因數

9被除數÷除數=商

被除數÷商=除數商×除數=被除數

四、小學數學圖形計算公式

1正方形

C周長S面積a邊長

周長=邊長×4C=4a

面積=邊長×邊長S=a×a

2正方體

V:體積a:棱長

表面積=棱長×棱長×6S表=a×a×6

體積=棱長×棱長×棱長V=a×a×a

3長方形

C周長S面積a邊長

周長=(長+寬)×2C=2(a+b)

面積=長×寬S=ab

4長方體

V:體積s:面積a:長b:寬h:高

表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)

體積=長×寬×高V=abh

5三角形

s面積a底h高

面積=底×高÷2s=ah÷2

三角形高=面積×2÷底三角形底=面積×2÷高

6平行四邊形

s面積a底h高

面積=底×高s=ah

7梯形

s面積a上底b下底h高

面積=(上底+下底)×高÷2s=(a+b)×h÷2

8圓形

S面積C周長∏d=直徑r=半徑

周長=直徑×∏=2×∏×半徑C=∏d=2∏r

面積=半徑×半徑×∏

9圓柱體

v:體積h:高s;底面積r:底面半徑c:底面周長

側面積=底面周長×高表面積=側面積+底面積×2

體積=底面積×高體積=側面積÷2×半徑

10圓錐體

v:體積h:高s;底面積r:底面半徑

體積=底面積×高÷3

>>>


小升初一至六年級數學知識點整理相關 文章 :

★ 小升初一至六年級數學知識點整理

★ 小升初考試必備數學一到六年級的知識點

★ 六年級數學知識點梳理

★ 小升初數學考試知識點整理

★ 小升初數學知識考點歸納

★ 小升初數學知識點總結

★ 六年級數學知識點整理

★ 小升初數學考試必備知識點與易錯點

★ 小升初數學知識點講解:數量關系計算公式+數學知識點整理

★ 攻克小升初數學必考的知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();