當前位置:首頁 » 基礎知識 » 高中數學代數知識點歸納
擴展閱讀
東方明珠兒童畫怎麼塗 2024-11-25 10:23:29

高中數學代數知識點歸納

發布時間: 2024-09-11 11:38:08

1. 高一數學知識點梳理歸納

失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 高一數學 的知識點,希望對大家有所幫助。

高一數學必修四知識點梳理

方程的根與函數的零點

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點.

3、函數零點的求法:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

高 一年級數學 必修三知識點

1、概念:

(1)回歸直線方程

(2)回歸系數

2.最小二乘法

3.直線回歸方程的應用

(1)描述兩變數之間的依存關系;利用直線回歸方程即可定量描述兩個變數間依存的數量關系

(2)利用回歸方程進行預測;把預報因子(即自變數x)代入回歸方程對預報量(即因變數Y)進行估計,即可得到個體Y值的容許區間。

(3)利用回歸方程進行統計控制規定Y值的變化,通過控制x的范圍來實現統計控制的目標。如已經得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。

4.應用直線回歸的注意事項

(1)做回歸分析要有實際意義;

(2)回歸分析前,先作出散點圖;

(3)回歸直線不要外延。

數學學習方法 技巧

答題少費時多辦事

解題上要抓好三個字:數,式,形;閱讀、審題和表述上要實現數學的三種語言自如轉化(文字語言、符號語言、圖形語言)。要重視和加強選擇題的訓練和研究。不能僅僅滿足於答案正確,還要學會優化解題過程,追求解題質量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的 經驗 ,盡可能小題小做,除直接法外,還要靈活運用特殊值法、排除法、檢驗法、數形結合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規范,不要「小題大做」,只要寫出「得分點」即可。

錯一次 反思 一次

每次考試或多或少會發生一些錯誤,這並不可怕,要緊的是避免類似的錯誤在今後的考試中重現。

因此平時要注意把錯題記下來,做錯題筆記包括三個方面:

(1)記下錯誤是什麼,用紅筆劃出。

(2)錯誤原因是什麼,從審題、題目歸類、重現知識和找出答案四個環節來分析。

(3)錯誤糾正方法及注意事項。根據錯誤原因的分析提出糾正方法並提醒自己下次碰到類似的情況應注意些什麼。你若能將每次考試或練習中出現的錯誤記錄下來分析,並盡力保證在下次考試時不發生同樣錯誤,那麼在高考時發生錯誤的概率就會大大減少。

分析試卷 總結 經驗

每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。

(1)遺憾之錯。就是分明會做,反而做錯了的題。

(2)似非之錯。記憶不準確,理解不夠透徹,應用不夠自如;回答不嚴密不完整等等。

(3)無為之錯。由於不會答錯了或猜錯了,或者根本沒有作答,這是無思路、不理解,更談不上應用的問題。原因找到後就盡早消除遺憾、弄懂似非、力爭有為。切實解決「會而不對、對而不全」的老大難問題。

優秀是一種習慣

柏拉圖說:「優秀是一種習慣」。好的習慣終生受益,不好的習慣終生後悔、吃虧。如「審題之錯」是否出在急於求成?可採取「一慢一快」戰術,即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩中求快,立足於一次成功,不要養成唯恐做不完,匆匆忙忙搶著做,寄希望於檢查的壞習慣。


高一數學知識點梳理歸納相關 文章 :

★ 高一數學知識點全面總結

★ 高一數學知識點復習歸納

★ 高一數學知識點總結歸納

★ 高一數學知識點歸納總結

★ 高一數學重要知識點梳理

★ 高一數學知識點匯總大全

★ 高一數學知識點(考前必看)

★ 高一數學知識點小歸納

★ 高中階段的高一數學課本知識點歸納

★ 高一數學必修一知識點梳理

2. 高一數學必修一知識點梳理

是孩子適應學校,適應老師,適應各種學習環境的時候,簡單說就是磨合期。高中知識點那麼多,學科壓力很大,很多人剛進入高一,還存在著新鮮勁和學習的動力,雖然有些吃力,但是依舊在力挺。下面是我給大家帶來的 高一數學 必修一知識點梳理,希望能幫助到你!

高一數學必修一知識點梳理1

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

【第三章:第三章函數的應用】

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點.

3、函數零點的求法:

求函數的零點:

1(代數法)求方程的實數根;

2(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數.

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

高一數學必修一知識點梳理2

1、函數零點的定義

(1)對於函數)(xfy,我們把方程0)(xf的實數根叫做函數)(xfy的零點。

(2)方程0)(xf有實根?函數()yfx的圖像與x軸有交點?函數()yfx有零點。因此判斷一個函數是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數根,有幾個實數根。函數零點的求法:解方程0)(xf,所得實數根就是()fx的零點(3)變號零點與不變號零點

①若函數()fx在零點0x左右兩側的函數值異號,則稱該零點為函數()fx的變號零點。②若函數()fx在零點0x左右兩側的函數值同號,則稱該零點為函數()fx的不變號零點。

③若函數()fx在區間,ab上的圖像是一條連續的曲線,則0)()(

2、函數零點的判定

(1)零點存在性定理:如果函數)(xfy在區間],[ba上的圖象是連續不斷的曲線,並且有()()0fafb,那麼,函數)(xfy在區間,ab內有零點,即存在),(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。

(2)函數)(xfy零點個數(或方程0)(xf實數根的個數)確定 方法

①代數法:函數)(xfy的零點?0)(xf的根;②(幾何法)對於不能用求根公式的方程,可以將它與函數)(xfy的圖象聯系起來,並利用函數的性質找出零點。

(3)零點個數確定

0)(xfy有2個零點?0)(xf有兩個不等實根;0)(xfy有1個零點?0)(xf有兩個相等實根;0)(xfy無零點?0)(xf無實根;對於二次函數在區間,ab上的零點個數,要結合圖像進行確定.

3、二分法

(1)二分法的定義:對於在區間[,]ab上連續不斷且()()0fafb的函數()yfx,通過不斷地把函數()yfx的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法;

(2)用二分法求方程的近似解的步驟:

①確定區間[,]ab,驗證()()0fafb,給定精確度e;

②求區間(,)ab的中點c;③計算()fc;

(ⅰ)若()0fc,則c就是函數的零點;

(ⅱ)若()()0fafc,則令bc(此時零點0(,)xac);(ⅲ)若()()0fcfb,則令ac(此時零點0(,)xcb);

④判斷是否達到精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步.

高一數學必修一知識點梳理3

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

當時,;當時,;當時,不存在.

②過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.

當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.

⑤一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(5)直線系方程:即具有某一共同性質的直線

(一)平行直線系

平行於已知直線(是不全為0的常數)的直線系:(C為常數)

(二)垂直直線系

垂直於已知直線(是不全為0的常數)的直線系:(C為常數)

(三)過定點的直線系

(ⅰ)斜率為k的直線系:,直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為

(為參數),其中直線不在直線系中.

(6)兩直線平行與垂直

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

(7)兩條直線的交點

相交

交點坐標即方程組的一組解.

方程組無解;方程組有無數解與重合

(8)兩點間距離公式:設是平面直角坐標系中的兩個點

(9)點到直線距離公式:一點到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點,再轉化為點到直線的距離進行求解.

高一數學必修一知識點梳理相關 文章 :

★ 高一數學必修一知識點匯總

★ 高一數學必修1知識點歸納

★ 高中數學必修1知識點總結

★ 高一數學必修一公式歸納

★ 高一數學必修一知識點總結

★ 高中數學高一數學必修一知識點

★ 高中必修一數學知識點歸納

★ 高一人教版數學必修一第一章知識點整理

★ 高一數學知識點匯總大全

★ 高一數學知識點總結

3. 有沒有完整的高中數學知識點及公式總結

高中數學知識點總結
1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。

中元素各表示什麼?

注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性質:

(3)德摩根定律:

4. 你會用補集思想解決問題嗎?(排除法、間接法)

的取值范圍。

6. 命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
9. 求函數的定義域有哪些常見類型?

10. 如何求復合函數的定義域?

義域是_____________。

11. 求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?

12. 反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)

13. 反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;

14. 如何用定義證明函數的單調性?
(取值、作差、判正負)
如何判斷復合函數的單調性?

∴……)
15. 如何利用導數判斷函數的單調性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值為3)
16. 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)

注意如下結論:
(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。

17. 你熟悉周期函數的定義嗎?

函數,T是一個周期。)

如:

18. 你掌握常用的圖象變換了嗎?

注意如下「翻折」變換:

19. 你熟練掌握常用函數的圖象和性質了嗎?

的雙曲線。

應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程

②求閉區間[m,n]上的最值。
③求區間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。

由圖象記性質! (注意底數的限定!)

利用它的單調性求最值與利用均值不等式求最值的區別是什麼?

20. 你在基本運算上常出現錯誤嗎?

21. 如何解抽象函數問題?
(賦值法、結構變換法)

22. 掌握求函數值域的常用方法了嗎?
(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)
如求下列函數的最值:

23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?

24. 熟記三角函數的定義,單位圓中三角函數線的定義

25. 你能迅速畫出正弦、餘弦、正切函數的圖象嗎?並由圖象寫出單調區間、對稱點、對稱軸嗎?

(x,y)作圖象。

27. 在三角函數中求一個角時要注意兩個方面——先求出某一個三角函數值,再判定角的范圍。

28. 在解含有正、餘弦函數的問題時,你注意(到)運用函數的有界性了嗎?

29. 熟練掌握三角函數圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:

圖象?

30. 熟練掌握同角三角函數關系和誘導公式了嗎?

「奇」、「偶」指k取奇、偶數。

A. 正值或負值 B. 負值 C. 非負值 D. 正值

31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?
理解公式之間的聯系:

應用以上公式對三角函數式化簡。(化簡要求:項數最少、函數種類最少,分母中不含三角函數,能求值,盡可能求值。)
具體方法:

(2)名的變換:化弦或化切
(3)次數的變換:升、降冪公式
(4)形的變換:統一函數形式,注意運用代數運算。

32. 正、餘弦定理的各種表達形式你還記得嗎?如何實現邊、角轉化,而解斜三角形?

(應用:已知兩邊一夾角求第三邊;已知三邊求角。)

33. 用反三角函數表示角時要注意角的范圍。

34. 不等式的性質有哪些?

答案:C
35. 利用均值不等式:

值?(一正、二定、三相等)
注意如下結論:

36. 不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數學歸納法等)
並注意簡單放縮法的應用。

(移項通分,分子分母因式分解,x的系數變為1,穿軸法解得結果。)
38. 用「穿軸法」解高次不等式——「奇穿,偶切」,從最大根的右上方開始

39. 解含有參數的不等式要注意對字母參數的討論

40. 對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最後取各段的並集。)

證明:

(按不等號方向放縮)
42. 不等式恆成立問題,常用的處理方式是什麼?(可轉化為最值問題,或「△」問題)

43. 等差數列的定義與性質

0的二次函數)

項,即:

44. 等比數列的定義與性質

46. 你熟悉求數列通項公式的常用方法嗎?
例如:(1)求差(商)法

解:

[練習]

(2)疊乘法

解:

(3)等差型遞推公式

[練習]

(4)等比型遞推公式

[練習]

(5)倒數法

47. 你熟悉求數列前n項和的常用方法嗎?
例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。

解:

[練習]

(2)錯位相減法:

(3)倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。

[練習]

48. 你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期後,本利和為:

△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,採用分期等額還款方式,從借款日算起,一期(如一年)後為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那麼每期應還x元,滿足

p——貸款數,r——利率,n——還款期數
49. 解排列、組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。

(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一

(3)組合:從n個不同元素中任取m(m≤n)個元素並組成一組,叫做從n個不

50. 解排列與組合問題的規律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優先法;多元問題分類法;至多至少問題間接法;相同元素分組可採用隔板法,數量不大時可以逐一排出結果。
如:學號為1,2,3,4的四名學生的考試成績

則這四位同學考試成績的所有可能情況是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成兩類:

(2)中間兩個分數相等

相同兩數分別取90,91,92,對應的排列可以數出來,分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51. 二項式定理

性質:

(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第

表示)

52. 你對隨機事件之間的關系熟悉嗎?

的和(並)。

(5)互斥事件(互不相容事件):「A與B不能同時發生」叫做A、B互斥。

(6)對立事件(互逆事件):

(7)獨立事件:A發生與否對B發生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。

53. 對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常採用排列組合的方法,即

(5)如果在一次試驗中A發生的概率是p,那麼在n次獨立重復試驗中A恰好發生

如:設10件產品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;

(2)從中任取5件恰有2件次品;

(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為「恰有2次品」和「三件都是次品」

(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)

分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。
54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。
55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:

(2)決定組距和組數;
(3)決定分點;
(4)列頻率分布表;
(5)畫頻率直方圖。

如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。

56. 你對向量的有關概念清楚嗎?
(1)向量——既有大小又有方向的量。

在此規定下向量可以在平面(或空間)平行移動而不改變。
(6)並線向量(平行向量)——方向相同或相反的向量。
規定零向量與任意向量平行。

(7)向量的加、減法如圖:

(8)平面向量基本定理(向量的分解定理)

的一組基底。
(9)向量的坐標表示

表示。

57. 平面向量的數量積

數量積的幾何意義:

(2)數量積的運演算法則

[練習]

答案:

答案:2

答案:
58. 線段的定比分點

※. 你能分清三角形的重心、垂心、外心、內心及其性質嗎?
59. 立體幾何中平行、垂直關系證明的思路清楚嗎?
平行垂直的證明主要利用線面關系的轉化:

線面平行的判定:

線面平行的性質:

三垂線定理(及逆定理):

線面垂直:

面面垂直:

60. 三類角的定義及求法
(1)異面直線所成的角θ,0°<θ≤90°

(2)直線與平面所成的角θ,0°≤θ≤90°

(三垂線定理法:A∈α作或證AB⊥β於B,作BO⊥棱於O,連AO,則AO⊥棱l,∴∠AOB為所求。)
三類角的求法:
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
[練習]
(1)如圖,OA為α的斜線OB為其在α內射影,OC為α內過O點任一直線。

(2)如圖,正四稜柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。
①求BD1和底面ABCD所成的角;
②求異面直線BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。

(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)
61. 空間有幾種距離?如何求距離?
點與點,點與線,點與面,線與線,線與面,面與面間距離。
將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。
如:正方形ABCD—A1B1C1D1中,棱長為a,則:
(1)點C到面AB1C1的距離為___________;
(2)點B到面ACB1的距離為____________;
(3)直線A1D1到面AB1C1的距離為____________;
(4)面AB1C與面A1DC1的距離為____________;
(5)點B到直線A1C1的距離為_____________。

62. 你是否准確理解正稜柱、正棱錐的定義並掌握它們的性質?
正稜柱——底面為正多邊形的直稜柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

它們各包含哪些元素?

63. 球有哪些性質?

(2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!
(3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。

(5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。

積為( )

答案:A
64. 熟記下列公式了嗎?

(2)直線方程:

65. 如何判斷兩直線平行、垂直?

66. 怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的「垂徑定理」。
67. 怎樣判斷直線與圓錐曲線的位置?

68. 分清圓錐曲線的定義

70. 在圓錐曲線與直線聯立求解時,消元後得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)

71. 會用定義求圓錐曲線的焦半徑嗎?
如:

通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與准線相切。
72. 有關中點弦問題可考慮用「代點法」。

答案:
73. 如何求解「對稱」問題?
(1)證明曲線C:F(x,y)=0關於點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關於點M的對稱點。

75. 求軌跡方程的常用方法有哪些?注意討論范圍。
(直接法、定義法、轉移法、參數法)
76. 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。