❶ 小升初數學必考知識點有哪些
小升初數學是非常容易拉分的科目,那麼小升初數學必考知識點有哪些呢。以下是由我為大家整理的「小升初數學必考知識點有哪些」,僅供參考,歡迎大家閱讀。
小升初數學必考知識點有哪些
一、整數和小數
1.最小的一位數是1,最小的自然數是0
2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.整數和小數都是按照十進制計數法寫出的數。
5.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
6.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
二、數的整除
1.因數和倍數:20÷4=5,20是4和5的倍數,4和5是20的因數。
2.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。
3.能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
4.質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。
合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。
最小的質數是2,最小的合數是4
1~20以內的質數有:2、3、5、7、11、13、17、19
1~20以內的合數有「4、6、8、9、10、12、14、15、16、18
5.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。
能被3整除的數的特徵:一個數的各位上數的和能被3整除,這個數就能被3整除。
6.公約因數、公倍數:幾個數公有的因數,叫做這幾個數的因數;其中最大的一個,叫做這幾個數的最大公因數。 幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
7.互質數:公因數只有1的兩個數叫做互質數。
三、四則運算
1.一個加數=和-另一個加數 被減數=差+減數 減數=被減數-差
一個因數=積÷另一個因數 被除數=商×除數 除數=被除數÷商
2.在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。
3.運算定律:
(1)加法交換律:a+b=b+a 兩個數相加,交換加數的位置,它們的和不變。
乘法交換律:a×b=b×a 兩個數相乘,交換因數的位置,它們的積不變。
(2)加法結合律:(a+b)+c=a+(b+c) 三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。
乘法結合律:(a×b)×c=a×(b×c) 三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。
(3)乘法分配律:(a+b)×c=a×c+b×c
兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(4)減法的性質:a-b-c=a-(b+c) 從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。
除法的性質:a÷b÷c=a÷(b×c) 一個數連續除以兩個數,等於這個數除以兩個除數的積。
拓展閱讀:小學提升數學成績的方法
一、培養認真審題的習慣
認真審題是正確解題、准確計算的前提。小學生因審題不嚴而導致錯誤的現象較重,原因是一方面學生識字量少,理解水平低;另一方面是做題急於求 成,不願審題。因此,教師在教學中,要引導學生認識審題的重要性,增強審題意識。同時,還要教給學生審題方法,建立解題的基本程序如審題—列式—計算—驗 算—作答等,把審題擺在解題過程的第一位。
二、培養認真驗算的習慣
在解題過程中,要培養認真驗算的習慣,這是保證解題正確性的關鍵。教師在教學中要把驗算作為解題過程的基本環節之一。加強訓練,嚴格要求和督促學生去做,要向學生講清什麼叫驗算以及驗算的方法、意義等。
三、培養認真估算的習慣
估算是保障計算準確的快捷手段,但現在不少教師認為估算很少作為考試內容而不予重視,這是十分錯誤的。教師要抓住各種時機,有意識的讓學生掌握 估算方法,引導學生發現一些和、差、積、商的規律。如2040÷40,估算時將2040看作2000,把2040÷40看作2000÷40來估算,可用來 檢驗計算的最高位是否正確,讓學生明白估算的重要性。
四、培養獨立完成作業的習慣
小學數學課堂作業較多,一些能力強的同學做的快、算的准,他們做完後便迫不及待的報出解題方法和結果。這使得一部分做題較慢的同學不假思索的照抄他們的結果,時間長了,這部分同學就養成了懶於思考的不良習慣。因此,培養學生獨立完成作業的習慣是學生學好數學的前提。
五、培養質疑問難的習慣
學生在學習中要多動腦筋,勤於思考。對概念、公式、定律等不要滿足於會背誦,更要力求理解。質疑問難是一種可貴的學習品質,能使學生在學習中刻 苦鑽研、勤於思考、主動進取。遇到不懂的問題主動請教,不恥下問,和同學展開討論,不弄清問題決不罷休,當問題得到解決時,學生就會享受到成功的喜悅,提 高學習數學的興趣。
六、培養自己發現錯誤的習慣
學生在學習中,必然會出現差錯,對此,老師不能等閑視之。因為學生出現差錯的地方,正是學生掌握知識的薄弱點,並且可能是典型的、普遍的。教師應有針對性地引導學生自己發現錯誤,用自己學到的檢驗方法去找出錯誤。在對比中把握問題的關鍵,力求自己發現並改正錯誤,提高解題技巧。
❷ 整數和小數小升初數學必考知識點
整數和小數小升初數學必考知識點
在平時的學習中,大家都沒少背知識點吧?知識點就是一些常考的內容,或者考試經常出題的地方。你知道哪些知識點是真正對我們有幫助的嗎?以下是我為大家收集的整數和小數小升初數學必考知識點,歡迎閱讀,希望大家能夠喜歡。
整數和小數小升初數學必考知識點1
1.最小的一位數是1,最小的自然數是0。
2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.小數的分類:小數、有限小數、無限循環小數、無限小數、無限不循環小數、
5.整數和小數都是按照十進制計數法寫出的數。
6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
整數和小數小升初數學必考知識點2
1 簡單應用題
(1) 簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。
(2) 解題步驟:
a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b選擇演算法和列式計算:這是解答應用題的中心工作。從題目中告訴什麼,要求什麼著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進行解答並標明正確的單位名稱。
C檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。
2 復合應用題
(1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。
(2)含有三個已知條件的兩步計算的應用題。
求比兩個數的和多(少)幾個數的應用題。
比較兩數差與倍數關系的應用題。
(3)含有兩個已知條件的兩步計算的應用題。
已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。
已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應用題。
(5)解答三步計算的應用題。
(6)解答小數計算的應用題:小數計算的加法、減法、乘法和除法的應用題,他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。
d答案:根據計算的結果,先口答,逐步過渡到筆答。
( 3 ) 解答加法應用題:
a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。
b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。
(4 ) 解答減法應用題:
a求剩餘的應用題:從已知數中去掉一部分,求剩下的部分。
-b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。
c求比一個數少幾的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數是多少。
(5 ) 解答乘法應用題:
a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。
b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。
( 6) 解答除法應用題:
a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。
b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。
C 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。
d已知一個數的幾倍是多少,求這個數的應用題。
(7)常見的數量關系:
總價= 單價×數量
路程= 速度×時間
工作總量=工作時間×工效
總產量=單產量×數量
3典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題: 平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)
(2) 歸一問題: 已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」
兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」
正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
數量關系式:單一量×份數=總數量(正歸一)
總數量÷單一量=份數(反歸一)
例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)歸總問題: 是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。
特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。
數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量單位數量×單位個數÷另一個單位數量= 另一個單位數量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差問題: 已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。
解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。
解題規律:(和+差)÷2 = 大數大數-差=小數
(和-差)÷2=小數和-小數= 大數
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)
(5)和倍問題: 已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。
解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。
解題規律:和÷倍數和=標准數標准數×倍數=另一個數
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)
(6)差倍問題: 已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。
解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。
(7)行程問題: 關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
解題關鍵及規律:
同時同地相背而行:路程=速度和×時間。
同時相向而行:相遇時間=速度和×時間
同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。
同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。
例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)
(8)流水問題: 一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速-水速
解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。
解題規律:船行速度=(順水速度+ 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。
(9) 還原問題: 已知某未知數,經過一定的四則運算後所得的`結果,求這個未知數的應用題,我們叫做還原問題。
解題關鍵:要弄清每一步變化與未知數的關系。
解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。
根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。
解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。
例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?
分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)
一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。
(10)植樹問題: 這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:沿線段植樹
棵樹=段數+1棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11 )盈虧問題: 是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。
解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。
解題規律:總差額÷每人差額=人數
總差額的求法可以分為以下四種情況:
第一次多餘,第二次不足,總差額=多餘+ 不足
第一次正好,第二次多餘或不足 ,總差額=多餘或不足
第一次多餘,第二次也多餘,總差額=大多餘-小多餘
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年齡問題: 將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。
解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)
(13)雞兔問題: 已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數
兔子只數=(總腿數-2×總頭數)÷2
如果假設全是兔子,可以有下面的式子:
雞的只數=(4×總頭數-總腿數)÷2
兔的頭數=總頭數-雞的只數
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數 50-35=15 (只)
整數和小數小升初數學必考知識點3
1.分數的意義:把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。
2.分數單位:把單位「1」平均分成若干份,表示其中一份的數,叫做分數單位。
3.分數和除法的聯系:分數的分子就是除法中的被除數,分母就是除法中的除數。
分數和小數的聯系:小數實際上就是分母是10、100、1000……的分數。
分數和比的聯系:分數的分子就是比的前項,分數的分母就是比的後項。
4.分數的分類:分數可以分為真分數和假分數。
5.真分數:分子小於分母的分數叫做真分數。真分數小於1。
假分數:分子大於或等於分母的分數叫做假分數。假分數大於或者等於1。
6.最簡分數:分子與分母互質的分數叫做最簡分數。
7.分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
8.這樣的分數可以化成有限小數:前提是這
個分數要是最簡分數,如果分母只含有2、5這2個質因數,這樣的分數就能化成有限小數。
9.百分數:表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫做百分率或者百分比。百分數通常用「%」來表示。
整數和小數小升初數學必考知識點4
升初數學運演算法則常考知識點
運演算法則
1. 整數加法計演算法則:
相同數位對齊,從低位加起,哪位上的數相加滿,就向前位進。
2. 整數減法計演算法則:
相同數位對齊,從低位加起,哪位上的數不夠減,就從它的前位退作,和本位上的數合並
3. 整數乘法計演算法則:
先個因數每位上的數分別去乘另個因數各個數位上的數,因數哪位上的數去乘,乘得的數的末尾就對齊哪位,然後把各次乘得的數加起來。
4. 整數除法計演算法則:
先從被除數的位除起,除數是位數,就看被除數的前位; 如果不夠除,就多看位,除到被除數的哪位,商就寫在哪位的上。如果哪位上不夠商1,要補「0」佔位。每次除得的余數要於除數。
5. 數乘法法則:
先按照整數乘法的計演算法則算出積,再看因數中共有位數,就從積的右邊起數出位,點上數點;如果位數不夠,就「0」補。
6. 除數是整數的數除法計演算法則:
先按照整數除法的法則去除,商的數點要和被除數的數點對齊;如果除到被除數的末尾仍有餘數,就在余數後添「0」,再繼續除。
7. 除數是數的除法計演算法則:
先移動除數的數點,使它變成整數,除數的數點也向右移動位(位數不夠的補「0」),然後按照除數是整數的除法法則進計算。
8. 同分母分數加減法計演算法:同分母分數相加減,只把分相加減,分母不變。
9. 異分母分數加減法計演算法:先通分,然後按照同分母分數加減法的的法則進計算。
10. 帶分數加減法的計演算法:整數部分和分數部分分別相加減,再把所得的數合並起來。
11. 分數乘法的計演算法則:分數乘整數,分數的分和整數相乘的積作分,分母不變;分數乘分數,分相乘的積作分,分母相乘的積作分母。
12. 分數除法的計演算法則:甲數除以數(0除外),等於甲數乘數的倒數。升初數學整數和數的應知識點整數和數的應
簡單應題
(1) 簡單應題:只含有種基本數量關系,或步運算解答的應題,通常叫做簡單應題。
a 審題理解題意:了解應題的內容,知道應題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b選擇演算法和列式計算:這是解答應題的中作。從題中告訴什麼,要求什麼著,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進解答並標明正確的單位名稱。
C檢驗:就是根據應題的條件和問題進檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。
2 復合應題
(1)有兩個或兩個以上的基本數量關系組成的,兩步或兩步以上運算解答的應題,通常叫做復合應題。
(2)含有三個已知條件的兩步計算的應題。求兩個數的和多(少)個數的應題。較兩數差與倍數關系的應題。
(3)含有兩個已知條件的兩步計算的應題。已知兩數相差多少(或倍數關系)與其中個數,求兩個數的和(或差)。已知兩數之和與其中個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應題。
(5)解答三步計算的應題。
(6)解答數計算的應題:數計算的加法、減法、乘法和除法的應題,他們的數量關系、結構、和解題式都與正式應題基本相同,只是在已知數或未知數中間含有數。
(2) 解題步驟:
d答案:根據計算的結果,先答,逐步過渡到筆答。
( 3 ) 解答加法應題:
a求總數的應題:已知甲數是多少,數是多少,求甲兩數的和是多少。
b求個數多的數應題:已知甲數是多少和數甲數多多少,求數是多少。
(4 ) 解答減法應題:
a求剩餘的應題:從已知數中去掉部分,求剩下的部分。
b求兩個數相差的多少的應題:已知甲兩數各是多少,求甲數數多多少,或數甲數少多少。
c求個數少的數的應題:已知甲數是多少,,數甲數少多少,求數是多少。
(5 ) 解答乘法應題:
a求相同加數和的應題:已知相同的加數和相同加數的個數,求總數。
b求個數的倍是多少的應題:已知個數是多少,另個數是它的倍,求另個數是多少。
( 6) 解答除法應題:
a把個數平均分成份,求每份是多少的應題:已知個數和把這個數平均分成份的,求每份是多少。
b求個數包含個另個數的應題:已知個數和每份是多少,求可以分成份。
C 求個數是另個數的的倍的應題:已知甲數數各是多少,求較數是較數的倍。
d已知個數的倍是多少,求這個數的應題。
(7)常見的數量關系:
總價= 單價×數量
路程= 速度×時間
作總量=作時間×效
總產量=單產量×數量
;❸ 小升初考試必備數學一到六年級的知識點
小升初數學考的知識點是一到六年級的知識點,整理出不同年級的小學數學重要知識點,對於備考很有用,我在這里整理了相關資料,希望能幫助到那您。
一年級的知識重點
1數與計算
(1)20以內數的認識,加法和減法。
數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題
(2)100以內數的認識。
加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。
兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。
2量與計量
鍾面的認識(整時)。人民幣的認識和簡單計算。
3幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
4應用題
比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)
5實踐活動
選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
二年級的知識重點
1數與計算
(1)兩位數加、減兩位數。兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。
(2)表內乘法和表內除法。乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。
(3)萬以內數的讀法和寫法。數數。百位、千位、萬位。數的讀法、寫法和大小比較。
(4)加法和減法。加法,減法。連加法。加法驗算,用加法驗算減法。
(5)混合運算。先乘除後加減。兩步計算式題。小括弧。
2量與計量
時、分、秒的認識。
米、分米、厘米的認識和簡單計算。
千克(公斤)的認識。
3幾何初步知識
直線和線段的初步認識。角的初步認識。直角。
4應用題
加法和減法一步計算的應用題。乘法和除法一步計算的應用題。比較容易的兩步計算的應用題。
5實踐活動
與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。
三年級的知識重點
1數與計算
(1)一位數的乘、除法。
一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。
(2)兩位數的乘、除法。
一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。
(3)四則混合運算。
兩步計算的式題。小括弧的使用。
(4)分數的初步認識。
分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。
2量與計量
千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。
3幾何初步知識
長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。
4應用題常見的數量關系。
解答兩步計算的應用題。
5實踐活動
聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。
四年級的知識重點
1數與計算
(1)億以內數的讀法和寫法。
計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。
(2)加法和減法。
加法,減法。
接近整十、整百數的加、減法的簡便演算法。
加、減法算式中各部分之間的關系。求未知數x。
(3)乘、除數是三位數的乘、除法。
乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。
乘、除計算的簡單估算。
乘數接近整十、整百的簡便演算法。
乘、除法算式中各部分之間的關系。求未知數x。
(4)四則混合運算。
中括弧。三步計算的式題。
(5)整數及其四則運算的關系和運算定律。
自然數與整數。十進制計數法。讀法和寫法。
四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。
運算定律。簡便運算。
(6)小數的意義、性質,加法和減法。
小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值加法和減法。加法運算定律推廣到小數。
2量與計量
年、月、日。平年、閏年。世紀。24時計時法。
角的度量。
面積單位。
3幾何初步知識
直線的測定。測量距離(工具測、步測、目測)。
射線。直角、銳角、鈍角、平角、*周角。垂線。畫垂線。平行線。畫平行線。
三角形的特徵。
三角形的內角和。
4統計初步知識
簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。
5應用題列綜合算式
解答比較容易的三步計算的應用題。
五年級的知識重點
1計算
小數乘法,小數除法,簡易方程,觀察物體,多邊形的面積,統計與可能性,數學廣角和數學綜合運用等。
在前面學習整數四則運算和小數加、減法的基礎上,繼續培養學生小數的四則運算能力。
2方程
用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。
3空間與物體
在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置。
4圖形的轉換
探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。
5統計與概率
教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性。
6平均數
理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。
7實際應用
通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。
六年級的知識重點
1數與計算
(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。
(2)分數四則混合運算,分數四則混合運算。
(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。
2比和比例
比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。
3幾何初步知識
圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。
4統計初步知識
統計表,條形統計圖,折線統計圖,扇形統計圖。
5應用題
分數四則應用題(包括工程問題),百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算),比例尺,按比例分配。
6實踐活動
聯系學生所接觸到的社會情況組織活動,例如就家中的卧室,畫一個平面圖。
❹ 小升初一至六年級數學知識點整理
水滴石穿,繩鋸木斷。備考小升初考試 ,也需要一點點積累才能到達好的效果,下面是我為大家帶來的有關小升初一至 六年級數學 知識點整理,希望大家喜歡。
▼▼目錄▼▼
1-6年級數學知識體系
必背定義、定理公式
小升初算術知識點
數量關系計算公式方面
一般運算規則
● 小升初數學知識點: 1-6年級知識體系
小學一年級九九乘法口訣表。學會基礎加減乘。
小學二年級完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級線角自然數整數,素因數梯形對稱,分數小數計算。
小學五年級分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級比例百分比概率,圓扇圓柱及圓錐。
>>>
● 小升初數學知識點: 必背定義、定理公式
三角形的面積=底×高÷2。公式S=a×h÷2
正方形的面積=邊長×邊長公式S=a×a
長方形的面積=長×寬公式S=a×b
平行四邊形的面積=底×高公式S=a×h
梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高公式:V=abh
長方體(或正方體)的體積=底面積×高公式:V=abh
正方體的體積=棱長×棱長×棱長公式:V=aaa
圓的周長=直徑×π公式:L=πd=2πr
圓的面積=半徑×半徑×π公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
>>>
● 小升初數學知識點: 算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
>>>
● 小升初數學知識點: 數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和
一個加數=和+另一個加數
被減數-減數=差
減數=被減數-差
被減數=減數+差
因數×因數=積
一個因數=積÷另一個因數
被除數÷除數=商
除數=被除數÷商
被除數=商×除數
有餘數的除法:被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、1公里=1千米1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克
1千克=1000克=
1公斤=1市斤
1公頃=10000平方米。
1畝=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中的一個,叫做公約數。)
17、互質數:公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3.141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3.141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3.141592654……
34、什麼叫代數?代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x=ab+c
>>>
● 小升初數學知識點: 一般運算規則
1每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
21倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6加數+加數=和
和-一個加數=另一個加數
7被減數-減數=差
被減數-差=減數差+減數=被減數
8因數×因數=積
積÷一個因數=另一個因數
9被除數÷除數=商
被除數÷商=除數商×除數=被除數
四、小學數學圖形計算公式
1正方形
C周長S面積a邊長
周長=邊長×4C=4a
面積=邊長×邊長S=a×a
2正方體
V:體積a:棱長
表面積=棱長×棱長×6S表=a×a×6
體積=棱長×棱長×棱長V=a×a×a
3長方形
C周長S面積a邊長
周長=(長+寬)×2C=2(a+b)
面積=長×寬S=ab
4長方體
V:體積s:面積a:長b:寬h:高
表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)
體積=長×寬×高V=abh
5三角形
s面積a底h高
面積=底×高÷2s=ah÷2
三角形高=面積×2÷底三角形底=面積×2÷高
6平行四邊形
s面積a底h高
面積=底×高s=ah
7梯形
s面積a上底b下底h高
面積=(上底+下底)×高÷2s=(a+b)×h÷2
8圓形
S面積C周長∏d=直徑r=半徑
周長=直徑×∏=2×∏×半徑C=∏d=2∏r
面積=半徑×半徑×∏
9圓柱體
v:體積h:高s;底面積r:底面半徑c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10圓錐體
v:體積h:高s;底面積r:底面半徑
體積=底面積×高÷3
>>>
小升初一至六年級數學知識點整理相關 文章 :
★ 小升初一至六年級數學知識點整理
★ 小升初考試必備數學一到六年級的知識點
★ 六年級數學知識點梳理
★ 小升初數學考試知識點整理
★ 小升初數學知識考點歸納
★ 小升初數學知識點總結
★ 六年級數學知識點整理
★ 小升初數學考試必備知識點與易錯點
★ 小升初數學知識點講解:數量關系計算公式+數學知識點整理
★ 攻克小升初數學必考的知識點
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❺ 初中二年級數學知識點歸納
初中二年級數學學的都是基礎知識點,但是初二是學好數學的關鍵時刻,所以做好知識點的歸納還是很有必要的。以下是我分享給大家的初中二年級數學知識點,希望可以幫到你!
初中二年級數學知識點
第十二章全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形.
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形.
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點.
⑷對應邊:全等三角形中互相重合的邊叫做對應邊.
⑸對應角:全等三角形中互相重合的角叫做對應角.
2.基本性質:
⑴三角形的穩定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩定性.
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等.
3.全等三角形的判定定理:
⑴邊邊邊(SSS):三邊對應相等的兩個三角形全等.
⑵邊角邊(SAS):兩邊和它們的夾角對應相等的兩個三角形全等.
⑶角邊角(ASA):兩角和它們的夾邊對應相等的兩個三角形全等.
⑷角角邊(AAS):兩角和其中一個角的對邊對應相等的兩個三角形全等.
⑸斜邊、直角邊(HL):斜邊和一條直角邊對應相等的兩個直角三角形全等.
4.角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等.
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上.
5.證明的基本方法:
⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據題意,畫出圖形,並用數字元號表示已知和求證.
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程.
第十三章軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱.
⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線.
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.
2.基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線.
②對稱的圖形都全等.
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等.
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上.
⑶關於坐標軸對稱的點的坐標性質
①點P(x,y)關於x軸對稱的點的坐標為P'(x,y).
②點P(x,y)關於y軸對稱的點的坐標為P"(x,y).
⑷等腰三角形的性質:
①等腰三角形兩腰相等.
②等腰三角形兩底角相等(等邊對等角).
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條).
⑸等邊三角形的性質:
①等邊三角形三邊都相等.
②等邊三角形三個內角都相等,都等於60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形.
②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
③有一個角是60°的等腰三角形是等邊三角形.
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線.
⑷作已知圖形關於某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短.
第十四章整式的乘除與分解因式
一、知識框架:
二、知識概念:
1.基本運算:
⑴同底數冪的乘法
⑵冪的乘方
⑶積的乘方
2.計算公式:
⑴平方差公式
⑵完全平方公式
3.因式分解:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個式子因式分解.
4.因式分解方法:
⑴提公因式法:找出最大公因式.
⑵公式法:
①平方差公式
二年級數學學習方法
(1)細心地發掘概念和公式
很多同學對概念和公式不夠重視,這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在代數式的概念(用字母或數字表示的式子是代數式)中,很多同學忽略了“單個字母或數字也是代數式”。二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯系。這樣就不能很好的將學到的知識點與解題聯系起來。三是,一部分同學不重視對數學公式的記憶。記憶是理解的基礎。如果你不能將公式爛熟於心,又怎能夠在題目中熟練應用呢?
我們的建議是:更細心一點(觀察特例),更深入一點(了解它在題目中的常見考點),更熟練一點(無論它以什麼面目出現,我們都能夠應用自如)。
(2)總結相似的類型題目
這個工作,不僅僅是老師的事,我們的同學要學會自己做。當你會總結題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些類型題不會做時,你才真正的掌握了這門學科的竅門,才能真正的做到“任它千變萬化,我自巋然不動”。這個問題如果解決不好,在進入初二、初三以後,同學們會發現,有一部分同學天天做題,可成績不升反降。其原因就是,他們天天都在做重復的工作,很多相似的題目反復做,需要解決的問題卻不能專心攻克。久而久之,不會的題目還是不會,會做的題目也因為缺乏對數學的整體把握,弄的一團糟。
我們的建議是:“總結歸納”是將題目越做越少的最好辦法。
(3)收集自己的典型錯誤和不會的題目
同學們最難面對的,就是自己的錯誤和困難。但這恰恰又是最需要解決的問題。同學們做題目,有兩個重要的目的:一是,將所學的知識點和技巧,在實際的題目中演練。另外一個就是,找出自己的不足,然後彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內容。但現實情況是,同學們只追求做題的數量,草草的應付作業了事,而不追求解決出現的問題,更談不上收集錯誤。我們之所以建議大家收集自己的典型錯誤和不會的題目,是因為,一旦你做了這件事,你就會發現,過去你認為自己有很多的小毛病,現在發現原來就是這一個反復在出現;過去你認為自己有很多問題都不懂,現在發現原來就這幾個關鍵點沒有解決。
我們的建議是:做題就像挖金礦,每一道錯題都是一塊金礦,只有發掘、冶煉,才會有收獲。
(4)就不懂的問題,積極提問、討論
發現了不懂的問題,積極向他人請教。這是很平常的道理。但就是這一點,很多同學都做不到。原因可能有兩個方面:一是,對該問題的重視不夠,不求甚解;二是,不好意思,怕問老師被訓,問同學被同學瞧不起。抱著這樣的心態,學習任何東西都不可能學好。“閉門造車”只會讓你的問題越來越多。知識本身是有連貫性的,前面的知識不清楚,學到後面時,會更難理解。這些問題積累到一定程度,就會造成你對該學科慢慢失去興趣。直到無法趕上步伐。
討論是一種非常好的學習方法。一個比較難的題目,經過與同學討論,你可能就會獲得很好的靈感,從對方那裡學到好的方法和技巧。需要注意的是,討論的對象最好是與自己水平相當的同學,這樣有利於大家相互學習。
我們的建議是:“勤學”是基礎,“好問”是關鍵。
(5)注重實戰(考試)經驗的培養
考試本身就是一門學問。有些同學平時成績很好,上課老師一提問,什麼都會。課下做題也都會。可一到考試,成績就不理想。出現這種情況,有兩個主要原因:一是,考試心態不不好,容易緊張;二是,考試時間緊,總是不能在規定的時間內完成。心態不好,一方面要自己注意調整,但同時也需要經歷大型考試來鍛煉。每次考試,大家都要尋找一種適合自己的調整方法,久而久之,逐步適應考試節奏。做題速度慢的問題,需要同學們在平時的做題中解決。自己平時做作業可以給自己限定時間,逐步提高效率。另外,在實際考試中,也要考慮每部分的完成時間,避免出現不必要的慌亂。
我們的建議是:把“做作業”當成考試,把“考試”當成做作業。
初二數學學習建議
1、預習的方法
預習是上課前對即將要上的數學內容進行閱讀,做到心中有數,以便於掌握聽課的主動權。這樣有利於提高學習能力和養成自學的習慣,所以它是數學學習中的重要一環。
(1)看書要動筆。(不動筆墨不讀書)
①一般採用邊閱讀、邊思考、邊書寫的方式,把內容的要點、層次、聯系劃出來或打上記號,寫下自己的看法或在弄不懂的地方與問題上做記號;
②預習時一旦發現舊知識掌握得不好,甚至不理解時,就要及時翻書查閱摘抄,採取措施補上,為順利學習新內容創造條件。
③了解本節課的基本內容,也就是知道要講些什麼,要解決什麼問題,採取什麼方法,重點關鍵在哪裡等等。
④要把某一本練習冊所對應的章節拿出來大致看一遍,看哪些題一下能看會,哪些題根本看不懂,然後帶著疑問去聽課。
(2)確定聽課要點。把握自己要解決的主要問題,以提高聽課的效率。
2、聽課的方法
聽課是學習數學的主要形式。在教師的指導、啟發、幫助下學習,就可以少走彎路,減少困難,能在較短的時間內獲得大量系統的數學知識,否則事倍功半,難以提高效率。所以聽課是學好數學的關鍵。
(1)盯住老師。除在預習中已明確的任務,做到有針對性地解決符合自己的問題外,還要把自己思維活動緊緊跟上教師的講課,如定理是如何發現或產生的,證明的思路是怎樣想出來的,中間要攻破哪幾個關鍵的地方。公式、定理是如何運用的。許多數學家都十分強調“應該不只看到書面上,而且還要看到書背後的東西。”
(2)敢於發言。聽課時,一方面理解教師講的內容,思考或回答教師提出的問題,另一方面還要獨立思考,如有疑問或有新的問題,要勇於提出自己的看法。
(3)記筆記。聽課時要把老師講課的要點、補充的內容與方法記下。
3、復習的方法
復習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精煉概括、牢固掌握的目的。復習應與聽課緊密銜接、邊閱讀教材邊回憶聽課內容或查看課堂筆記,及時解決存在的知識缺陷與疑問。
(1)復習筆記和卷紙。對學習的內容務求弄懂,切實理解掌握。不能僅停留在把已學的知識溫習記憶一遍的要求上,而要去努力思考新知識是怎樣產生的,是如何展開或得到證明的,其實質是什麼,應用它如何拓展加寬等。要勤於復習(知識點、典型題等),經常看,反復看---這就是心理學上講的艾賓浩斯遺忘曲線所揭示的道理。建議學生採用放電影的方法。完成作業後,把書和筆記合上,回憶課堂上的內容,如定律、公式及例題解答思路、方法等,盡量完整的在大腦中重現。再打開課本及筆記進行對照,重點復習遺漏的知識點。這既鞏固了當天上課內容,也可查漏補缺。
(2)適量做題。准備一個錯題本,記載做過的錯題再次演練。對於自己曾經做錯的題目,回想一下為什麼會錯、錯在什麼地方。自己曾經犯錯誤的地方,往往是自己最薄弱的地方,僅有當時的訂正是不夠的,還要進行適當的強化訓練。
(3)大膽質疑,增強學習的主動性。要經常與同學研究,或問老師,不要積攢過多問題。更不要把不會做的題完全寄託在課堂上等待老師去講。
4、做作業的方法
數學學習往往是通過做作業,以達到對知識的鞏固、加深理解和學會運用,從而形成技能技巧,以及發展智力與數學能力。由於作業是在復習的基礎上獨立完成的,能檢查出對所學數學知識的掌握程度,能考查出能力的水平,發現存在的問題,困難。當做錯的題目較多時,往往標志著知識的理解與掌握上存在缺陷或問題,應引起警覺,需及早查明原因,予以解決。
(1)先復習後做作業。在做作業前需要先復習,在基本理解與掌握所學教材的基礎上進行,否則事倍功半,花費了時間,得不到應有的效果。
(2)必須獨立完成。培養良好的習慣,在作業中要做得整齊、清潔,要注重解題格式。書寫規范。作業必須獨立完成。高質量的完成作業可以培養一種獨立思考和解題正確的責任感。
(3)短時高效。規定一個具體時間,在此期間什麼除了寫作業,其他都不允許干。思維鬆散、精力不集中的作業習慣,對提高數學能力是有害而無益的。
(4)認真核查。准備一個紅筆,正確的打對號,不一樣的再做一遍,檢查是自己做的對還是答案對,一些不會的題或叫不準的題問老師、問同學。
猜你喜歡:
1. 初中生數學學習方法總結
2. 初中數學學習方法總結
3. 初中數學手抄報內容大全
4. 初中數學學習的兩個重要能力
5. 初中部數學學習方法總結
❻ 小升初數學知識點總結
小升初數學知識點總結大全
引導語:小升初是作為學生要面臨的第一個大考,以下是我搜集整理的小升初數學知識點總結大全,歡迎大家閱讀!
一、整數和小數
1.最小的一位數是1,最小的自然數是
2.小數的意義:把整數1平均分成10份、100份、1000份這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾可以用小數來表示。
3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位
4.小數的分類:小數 有限小數 無限循環小數無限小數無限不循環小數
5.整數和小數都是按照十進制計數法寫出的數。
6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
7.小數點向右移動一位、二位、三位原來的數分別擴大10倍、100倍、1000倍
小數點向左移動一位、二位、三位原來的數分別縮小10倍、100倍、1000倍
二、數的整除
1.整除:整數a除以整數b(b0),除得的商正好是整數而且沒有餘數,我們就說a能被b整除,或者說b能整除a。
2.約數、倍數:如果數a能被數b整除,a就叫做b的倍數,b就叫做a的約數。
3.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
一個數約數的個數是有限的,最小的約數是1,最大的約數是它本身。
4.按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
5.按一個數約數的個數,非0自然數可分為1、質數、合數三類。
質數:一個數,如果只有1和它本身兩個約數,這樣的數叫做質數。質數都有2個約數。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。合數至少有3個約數。
最小的質數是2,最小的合數是
1~20以內的質數有:2、3、5、7、11、13、17、
1~20以內的合數有4、6、8、9、10、12、14、15、16、
6.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。
能被3整除的數的特徵:一個數的各位上 數的和能被3整除,這個數就能被3整除。
7.質因數:如果一個自然數的因數是質數,這個因數就叫做這個自然數的質因數。
8.分解質因數:把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
9.公約數、公倍數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。
幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
10.一般關系的兩個數的最大公約數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公約數是小數,最小公倍數是大數。
11.互質數:公約數只有1的兩個數叫做互質數。
12.兩數之積等於最小公倍數和最大公約數的積。
三、四則運算
1.一個加數=和-另一個加數 被減數=差+減數 減數=被減數-差
一個因數=積另一個因數 被除數=商除數 除數=被除數商
2.在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。
3.運算定律:
(1)加法交換律:a+b=b+a 乘法交換律:ab=b
兩個數相加,交換加數的位置,它們的和不變。
兩個數相加,交換因數的位置,它們的積不變。
(2)加法結合律:(a+b)+c=a+(b+c) 乘法結合律:(ab)c=a(b
三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。
三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。
(3)乘法分配律:(a+b)c=ac+b
兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(4)減法的性質:a-b-c=a-(b+c) 除法的性質:abc=a(b
從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。
一個數連續除以兩個數,等於這個數除以兩個除數的積。
四、關系式
速度時間=路程 路程時間=速度 路程速度=時間
工作效率工作時間=工作總量 工作總量工作效率=工作時間 工作總量工作時間=工作效率
單價數量=總價 總價數量=單價 總價單價=數量
五、方程
1.方程:含有未知數的等式叫做方程。
2.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。
3.解方程:求方程解的過程叫做解方程。
六、分數和百分數
1.分數的意義:把單位1平均分成若干份,表示這樣的一份或幾份的數叫做分數。
2.分數單位:把單位1平均分成若干份,表示其中一份的數,叫做分數單位。
3.分數和除法的聯系:分數的分子就是除法中的被除數,分母就是除法中的除數。
分數和小數的聯系:小數實際上就是分母是10、100、1000的分數。
分數和比的聯系:分數的分子就是比的前項,分數的分母就是比的後項。
4.分數的分類:分數可以分為真分數和假分數。
5.真分數:分子小於分母的分數叫做真分數。真分數小於1。
假分數:分子大於或等於分母的分數叫做假分數。假分數大於或者等於1。
6.最簡分數:分子與分母互質的分數叫做最簡分數。
7.分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
8.這樣的分數可以化成有限小數:前提是這個分數要是最簡分數,如果分母只含有2、5這2個質因數,這樣的分數就能化成有限小數。
9.百分數:表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫做百分率或者百分比。百分數通常用%來表示。
七、量的計量
1.長度單位有:千米、米、分米、厘米、毫米,寫出它們之間的進率
面積單位有:平方千米、公頃、平方米、平方分米、平方厘米,寫出它們之間的進率。
體積(容積)單位有:立方米、立方分米(升)、立方厘米(毫升),寫出它們之間的進率。
質量單位有:噸、千克、克,寫出它們之間的進率。
時間單位有:世紀、年、月、日、時、分、秒,寫出它們之間的進率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7個,每月31天。
小月有:4、6、9、11月,共4個,每月30天。
二月平年是28天,閏年是29天。
左拳記月法
3.一年有4個季度,每個季度3個月。
4.平年閏年:公歷年份是4的倍數的一般是閏年,公歷年份是整百數的,必須是400的倍數才是閏年。
5.名數:把計量得到的數和單位名稱合起來叫做名數。
單名數:只帶有一個單位名稱的叫做單名數。
復名數:帶有兩個或兩個以上單位名稱的叫做復名數。
6.名數的改寫:高級單位的名數化成低級單位的名數乘進率,低級單位的名數化成高級單位的名數除以進率。
八、幾何初步知識
1.線段、射線、直線的聯系與區別:聯系是三者都是直的,區別是線段有兩個端點,可以量出長度;射線只有一個端點,可以無限延長;直線沒有端點,兩端都可以無限延長。射線和直線是無限長的。
2.角:從一點引出兩條射線所組成的圖形叫做角。
3.角的大小:角的大小看兩條邊叉開的大小,叉開的越大,角越大。
1.計量角的大小的單位:度,用符號表示。
2.小於90的角叫做銳角;大於90而小於180的角叫做鈍角。角的兩邊在一條直線上的角叫做平角。平角180。
3.垂線:兩條直線相交成直角時,這兩條直線互相垂直,其中一條直線是另一條直線的垂線,這兩條直線的交點叫做垂足。(畫圖說明)
4.平行線:在同一平面內不相交的兩條直線叫做平行線。也可以說這兩條直線互相平行。
(畫圖說明)平行線之間垂直線段的長度都相等。
5.三角形:有三條線段圍成的圖形叫做三角形。
6.三角形的分類:
(1)按角分:銳角三角形、鈍角三角形、直角三角形。
(2)按邊分:一般三角形、等腰三角形、等邊三角形。
10.三角形三個內角和是180。
11.四邊形:由四條線段圍成的圖形。
12.圓是一種曲線圖形。圓上任意一點到圓心的距離都相等,這個距離就是圓的半徑的長。
13.圓的半徑、直徑都有無數條。在同一個圓里,直徑是半徑的2倍,半徑是直徑的二分之一。
14.軸對稱圖形:如果一個圖形沿著一條直線對折,直線兩惻的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
15.學過的圖形中的軸對稱圖形有:圓、等腰三角形、等邊三角形、長方形、正方形、等腰梯形
16.周長:圍成一個圖形的所有邊長的總和就是這個圖形的周長。
面積:物體的表面或圍成的平面圖形的大小,叫做它們的面積。
17.表面積:立體圖形所有面的面積的和,叫做這個立體圖形的表面積。
體積:物體所佔空間的大小叫做物體的體積。
18.長方體、正方體都有12條棱,6個面,8個頂點。
正方體是特殊的長方體,等邊三角形是特殊的等腰三角形。
19.圓柱的三個特點:(1)上下一樣粗細(2)側面是曲面(3)兩個底面是相同的圓
20.圓柱的高:圓柱兩個底面之間的距離叫做圓柱的高。圓柱的高有無數條,這些高都平行且相等。
21.把圓柱的側面展開,得到一個長方形,這個長方形的長等於圓柱的底面的周長,寬等於圓柱的.高。
22.圓周率是一個無限不循環小數。=3.141592653
23.把圓等份成若干份,拼成的圖形接近於長方形。這個長方形的長相當於圓周長的一半,寬就是圓的半徑。
24.圓錐的高:從圓錐的頂點到底面圓心的距離是圓錐的高。
25.等底等高的圓錐的體積是圓柱的,等底等高的圓柱的體積是圓錐的三倍。
體積和底面積相等的圓柱和圓錐,圓柱的高是圓錐的,圓錐的高是圓柱的3倍。
九、比和比例
1.比的意義:兩個數相除又叫做兩個數的比。
比例的意義:表示兩個比相等的式子叫做比例。
2.求比值:比的前項除以比的後項所得的商叫做比值。
3.比的基本性質:比的前項和後項都乘或除以相同的數(0除外),比值不變。
比例的基本性質:在比例里,兩個外項的積等於兩個內項的積。
4.應用比的基本性質可以化簡比;
應用比例的基本性質可以判斷兩個比是否能組成比例,也可以求比例里的未知項,也就是解比例。
5.用字母表示比與除法和分數的關系。
a:b=ab=(b0)
6.比例尺:我們把圖上距離和實際距離的比,叫做這幅圖的比例尺。
7.圖上距離:實際距離=比例尺
或=比例尺 實際距離=圖上距離比例尺 圖上距離=實際距離比例尺
8.求比值的方法:根據比值的意義,用前項除以後項,結果是一個數。
化簡比的方法:根據比的基本性質,把比的前項和後項都乘或除以相同的數(零除外),結果是一個最簡整數比。
9.正比例關系:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們之間的關系叫做正比例關系。
用式子表示:=k(一定),用圖表示正比例關系是一條直線。
10.反比例關系:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們之間的關系叫做反比例關系。
用式子表示:xy=k(一定),用圖表示反比例關系是一條曲線。
十、簡單的統計
1.常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
2.條形統計圖特點:(1)用一個單位長度表示一定的數量。(2)用直條的長短來表示數量的多少。 作用:從圖中能清楚地看出各數量的多少,便於相互比較。
折線統計圖的特點:(1)用一個單位長度表示一定的數量。(2)用折線的起伏來表示數量的增減變化。 作用:從圖中能清楚地看出數量的增減變化情況,也能看出數量的多少。
十一、公式的整理
平面圖形:
1.長方形:
周長=(長+寬)2 C長=(a+b)2
面積=長寬 S長=a b
2.正方形:
周長=邊長4 C正=a4
面積=邊長邊長 S正=aa
3.平行四邊形的面積=底高 S平=ah
4.三角形的面積=底高2 S三=ah2
5.梯形的面積=(上底+下底)高2 S梯=(a+b)h
6.圓的周長=直徑3.14 C圓=
圓的周長=半徑23.14 C圓=2
圓的面積=半徑的平方圓周率 S圓=
立體圖形:
1.長方體
表面積=(長寬+長高+寬高)2 S長表=(ab+ah+bh)2
體積=長寬高 V長=abh
2.正方體
表面積=棱長棱長6 S正表=aa
體積=棱長棱長棱長 V正=a3
3.圓柱
側面積=底面周長高
表面積=側面積+兩個底面積
體積=底面積高
4.以上立體圖形的表面積、體積可以統一成公式為:
表面積=底面周長高+兩個底面積 體積=底面積高
5.圓錐的體積=圓柱的體積3 V錐=sh3
;