① 五年級下冊數學重要知識點
五年級下冊數學重要知識點有哪些呢?感興趣的同學們快來和我一起看看吧。下面是由我為大家整理的「五年級下冊數學重要知識點」,僅供參考,歡迎大家閱讀。
五年級下冊數學重要知識點
第一單元 方程
1、表示相等關系的式子叫做等式。
2、含有未知數的等式是方程。
3、方程一定是等式;等式不一定是方程。等式>方程
4、等式兩邊同時加上或減去同一個數,所得結果仍然是等式。這是等式的性質。
等式兩邊同時乘或除以同一個不等於0的數,所得結果仍然是等式。這也是等式的性質。
5、求方程中未知數的過程,叫做解方程。
解方程時常用的關系式:
一個加數=和-另一個加數 減數=被減數-差 被減數=減數+差
一個因數=積÷另一個因數 除數=被除數÷商 被除數=商×除數
注意:解完方程,要養成檢驗的好習慣。
6、五個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間的一個數的5倍。奇數個連續的自然數(或連續的奇數,連續的偶數)的和÷個數=中間數
7、4個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間兩個數或首尾兩個數的和×個數÷2(高斯求和公式)
8、列方程解應用題的思路:A、審題並弄懂題目的已知條件和所求問題。B、理清題目的等量關系。C、設未知數,一般是把所求的數用X表示。D、根據等量關系列出方程E、解方程F、檢驗G、作答。
第二單元 確定位置
1、確定位置時,豎排叫做列,橫排叫做行。確定第幾列一般從左往右數,確定第幾行一般從前往後數。
2、數對(x,)第1個數表示第幾列(x),第2個數表示第幾行(),寫數對時,是先寫列數,再寫行數。
3、從地球儀上看,連接北極和南極兩點的是經線,垂直於經線的線圈是緯線,經線和緯線、分別按一定的順序編排表示「經度」和「緯度」,「經度」和「緯度」都用度(°)、分(′)、秒(″)表示。
4、將某個點向左右平移幾格,只是列(x)上的數字發生加減變化,向左減,向右加,行()上的數字不變。舉例:將點(6,3)的位置向右平移2個單位後的位置是(8,3),列6+2=8;將點(6,3)的位置向左平移2個單位後的位置是(4,3),列6-2=4。
5、將某個點向上下平移幾格,只是行()上的數字發生加減變化,向上減,向下加,列(x)上的數字不變。舉例:將點(6,3)的位置向上平移2個單位後的位置是(6,5),行3+2=5;將點(6,3)的位置向下平移2個單位後的位置是(6,1),列3-2=1。
第三單元 公倍數和公因數
1、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。
一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。
一個數最大的因數等於這個數最小的倍數。
2、幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,用符號[ ,]表示。幾個數的公倍數也是無限的。
3、兩個數公有的因數,叫做這兩個數的公因數,其中最大的一個,叫做這兩個數的最大公因數,用符號( , )。兩個數的公因數也是有限的。
4、兩個素數的積一定是合數。舉例:3×5=15,15是合數。
5、兩個數的最小公倍數一定是它們的最大公因數的倍數。舉例:[6,8]=24,(6,8)=2,24是2的倍數。
6、求最大公因數和最小公倍數的方法:
倍數關系的.兩個數,最大公因數是較小的數,最小公倍數是較大的數。舉例:15和5,[15,5]=15,(15,5)=5;
素數關系的兩個數,最大公因數是1,最小公倍數是它們的乘積。舉例:[3,7]=21,(3,7)=1;
一個素數和一個合數,最大公因數是1,最小公倍數是它們的乘積。[5,8]=40,(5,8)=1;
相鄰關系的兩個數,最大公因數是1,最小公倍數是它們的乘積。[9,8]=72,(9,8)=1;
特殊關系的數(兩個都是合數,一個是奇數,一個是偶數,但他們之間只有一個公因數1),比如4和9、4和15、10和21,最大公因數是1,最小公倍數是它們的乘積。
拓展閱讀:五年級上冊數學知識點
第一單元 小數乘法
1、小數乘整數:意義——求幾個相同加數的和的簡便運算。
如:1.5×3表示1.5的3倍是多少或3個1.5是多少。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
2、小數乘小數:意義——就是求這個數的幾分之幾是多少。
如:1.5×0.8(整數部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整數部分不是0)就是求1.5的1.8倍是多少。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。
3、規律:一個數(0除外)乘大於1的數,積比原來的數大; 一個數(0除外)乘小於1的數,積比原來的數小。
4、求近似數的方法一般有三種:
⑴四捨五入法;⑵進一法;⑶去尾法
5、計算錢數,保留兩位小數,表示計算到分。保留一位小數,表示計算到角。
6、小數四則運算順序跟整數是一樣的。
7、運算定律和性質:
加法:
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法:乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1時,省略b)
變式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c
減法:減法性質:a-b-c=a-(b+c)
除法:除法性質:a÷b÷c=a÷(b×c)
第二單元 位置
8、確定物體的位置,要用到數對(先列:即豎,後行即橫排)。用數對要能解決兩個問題:一是給出一對數對,要能在坐標途中標出物體所在位置的點。二是給出坐標中的一個點,要能用數對表示。
第三單元 小數除法
10、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。如:0.6÷0.3表示已知兩個因數的積0.6,一個因數是0.3,求另一個因數是多少。
11、小數除以整數的計算方法:小數除以整數,按整數除法的方法去除,商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。
11、除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按「除數是整數的小數除法」的法則進行計算。
注意:如果被除數的位數不夠,在被除數的末尾用0補足。
12、在實際應用中,小數除法所得的商也可以根據需要用「四捨五入」法保留一定的小數位數,求出商的近似數。
13、除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。②除數不變,被除數擴大(縮小),商隨著擴大(縮小)。③被除數不變,除數縮小,商反而擴大;被除數不變,除數擴大,商反而縮小。
14、循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。 循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如6.3232……的循環節是32.簡寫作6.32
15、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。小數分為有限小數和無限小數。
第四單元 可能性
16、事件發生有三種情況:可能發生、不可能發生、一定發生。
17、可能發生的事件,可能性大小。把幾種可能的情況的份數相加做分母,單一的這種可能性做分子,就可求出相應事件發生可能性大小。
第五單元 簡易方程
18、在含有字母的式子里,字母中間的乘號可以記作「·」,也可以省略不寫。加號、減號除號以及數與數之間的乘號不能省略。
19、a×a可以寫作a·a或a ,a 讀作a的平方 2a表示a+a
特別地1a=a這里的:「1「我們不寫
20、方程:含有未知數的等式稱為方程(★方程必須滿足的條件:必須是等式 必須有未知數兩者缺一不可)。使方程左右兩邊相等的未知數的值,叫做方程的解。求方程的解的過程叫做解方程。
21、解方程原理:天平平衡。等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立。
22、10個數量關系式:加法:和=加數+加數 一個加數=和-另一個加數
減法:差=被減數-減數 被減數=差+減數 減數=被減數-差
乘法:積=因數×因數 一個因數=積÷另一個因數
除法:商=被除數÷除數 被除數=商×除數 除數=被除數÷商
23、所有的方程都是等式,但等式不一定都是等式。
24、方程的檢驗過程:方程左邊=……
25、方程的解是一個數;解方程式一個計算過程。=方程右邊 所以,X=…是方程的解。
第六單元 多邊形的面積
26、公式:
正方形:
正方形的面積=邊長X邊長 S正=aXa=a2;
已知:正方形的面積,求邊長;
長方形:
長方形的面積=長X寬;
S長=aXb
已知:長方形的面積和長,求寬;
平行四邊形:
平行四邊形的面積=底X高;
S平=aXh
已知:平行四邊形的面積和底,求高 h=S平÷a;
三角形:
三角形的面積=底X寬高÷2;
S三=aXh÷2
已知:三角形的面積和底,求高;
H=S三X2÷a
梯形:
梯形形的面積=(上底+下底)X高÷2
S梯=(a+b)X2
已知:梯形的面積與上下底之和,求高
高=面積×2÷(上底+下底)
上底=面積×2÷高-下底
組合圖形:
當組合圖形是凸出的,用兩種或三種簡單圖形面積相加進行計算。
當組合圖形是凹陷的,用一種最大的簡單圖形面積減較小的簡單圖形面積進行計算。
27、平行四邊形面積公式推導:剪拼、平移
平行四邊形可以轉化成一個長方形;長方形的長相當於平行四邊形的底; 長方形的寬相當於平行四邊形的高;長方形的面積等於平行四邊形的面積,因為長方形面積=長×寬,所以平行四邊形面積=底×高。
28、三角形面積公式推導:旋轉
兩個完全一樣的三角形可以拼成一個平行四邊形,平行四邊形的底相當於三角形的底;平行四邊形的高相當於三角形的高;
平行四邊形的面積等於三角形面積的2倍,因為平行四邊形面積=底×高,所以三角形面積=底×高÷2;
29、梯形面積公式推導:旋轉
30、兩個完全一樣的梯形可以拼成一個平行四邊形。平行四邊形的底相當於梯形的上下底之和;平行四邊形的高相當於梯形的高;平行四邊形面積等於梯形面積的2倍,因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2。
② 五年級下學期數學知識點歸納
小學的時候,我們只知道玩,並不知道知識點如何總結。為了幫助同學們更好的學習。下面是由我為大家整理的「五年級下學期數學知識點歸納」,僅供參考,歡迎大家閱讀。
五年級下學期數學知識點歸納
1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、成軸對稱圖形的特徵和性質:①對稱點到對稱軸的距離相等;②對稱點的連線與對稱軸垂直;③對稱軸兩邊的圖形大小形狀完全相同。
3、物體旋轉時應抓住三點:①旋轉中心;②旋轉方向;③旋轉角度。旋轉只改變物體的位置,不改變物體的形狀、大小。
一 、因數與倍數
1、因數和倍數:如果整數a能被b整除,那麼a就是b的倍數,b就是a的因數。
2、一個數的因數的求法:一個數的因數的個數是有限的,最小的是1,最大的是它本身,方法是成對地按順序找。
3、一個數的倍數的求法:一個數的倍數的個數是無限的,最小的是它本身,沒有最大的,方法時依次乘以自然數。
4、2、5、3的倍數的特徵:個位上是0、2、4、6、8的數,都是2的倍數。個位上是0或5的數,是5的倍數。一個數各位上的數的和是3的倍數,這個數就是3的倍數。
5、偶數與奇數:是2倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數。
6、質數和和合數:一個數,如果只有1和它本身兩個因數的數叫做質數(或素數),最小的質數是2。一個數,如果除了1和它本身還有別的因數的數叫做合數,最小的合數是4。
二、長方體和正方體
1、長方體和正方體的特徵:長方體有6個面,每個面都是長方形(特殊的有一組對面是正方形),相對的面完全相同;有12條棱,相對的棱平行且相等;有8個頂點。正方形有6個面,每個面都是正方形,所有的面都完全相同;有12條棱,所有的棱都相等;有8個頂點。
2、長、寬、高:相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
3、長方體的棱長總和=(長+寬+高)×4??? 正方體的棱長總和=棱長×12
4、表面積:長方體或正方體6個面的總面積叫做它的表面積。
5、長方體的表面積=(長×寬+長×高+寬×高)×2?? S=(ab+ah+bh)×2
正方體的表面積=棱長×棱長×6?? 用字母表示:S=
6、表面積單位:平方厘米、平方分米、平方米? 相鄰單位的進率為100
7、體積:物體所佔空間的大小叫做物體的體積。
8、長方體的體積=長×寬×高??? 用字母表示:V=abh?? 長=體積÷(寬×高)寬=體積÷(長×高)
高=體積÷(長×寬)
正方體的體積=棱長×棱長×棱長?? 用字母表示:V= a×a×a
9、體積單位:立方厘米、立方分米和立方米? 相鄰單位的進率為1000
10、長方體和正方體的體積統一公式:長方體或正方體的體積=底面積×高 V=Sh
11、體積單位的互化:把高級單位化成低級單位,用高級單位數乘以進率;
把低級單位聚成高級單位,用低級單位數除以進率。
12、容積:容器所能容納物體的體積。
13、容積單位:升和毫升(L和ml) 1L=1000ml? 1L=1000立方厘米?? 1ml=1立方厘米
14、容積的計算:長方體和正方體容器容積的計算方法跟體積的計算方法相同,但要從裡面量長、寬、高。
三 、分數的意義和性質
1、分數的意義:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做分數。
2、分數單位:把單位「1」平均分成若干份,表示這樣的.一份的數叫做分數單位。
3、分數與除法的關系:除法中的被除數相當於分數的分子,除數相等於分母,用字母表示:a÷b= (b≠0)。
4、真分數和假分數:分子比分母小的分數叫做真分數,真分數小於1。分子比分母大或分子和分母相等的分數叫做假分數,假分數大於1或等於1。由整數部分和分數部分組成的分數叫做帶分數。
5、假分數與帶分數的互化:把假分數化成帶分數,用分子除以分母,所得商作整數部分,余數作分子,分母不變。把帶分數化成假分數,用整數部分乘以分母加上分子作分子,分母不變。
6、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質。
7、最大公因數:幾個數共有的因數叫做它們的公因數,其中最大的一個叫做最大公因數。
8、互質數:公因數只有1的兩個數叫做互質數。兩個數互質的特殊判斷方法:①1和任何大於1的自然數互質。②2和任何奇數都是互質數。③相鄰的兩個自然數是互質數。④相鄰的兩個奇數互質。⑤不相同的兩個質數互質。⑥當一個數是合數,另一個數是質數時(除了合數是質數的倍數情況下),一般情況下這兩個數也都是互質數。
9、最簡分數:分子和分母只有公因數1的分數叫做最簡分數。
10、約分:把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。
11、最小公倍數:幾個數共有的倍數叫做它們的公倍數,其中最小的一個叫做最小公倍數。
12、通分:把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
13、特殊情況下的最大公因數和最小公倍數:
①成倍數關系的兩個數,最大公因數就是較小的數,最小公倍數就是較大的數。②互質的兩個數,最大公因數就是1,最小公倍數就是它們的乘積。
14、分數的大小比較:同分母的分數,分子大的分數就大,分子小的分數就小;同分子的分數,分母大的分數反而小,分母小的分數反而大。
15、分數和小數的互化:小數化分數,一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……,去掉小數點作分子,能約分的必須約成最簡分數;分數化小數,用分子除以分母,除不盡的按要求保留幾位小數。
四、分數的加法和減法
1、同分母分數的加減法:同分母分數相加、減,分母不變,只把分子相加減。
2、異分母分數的加減法:異分母分數相加、減,先通分,再按照同分母分數加減法的方法進行計算。
3、分數加減混合運算的運算順序與整數加減混合運算的順序相同。在一個算式中,如果含有括弧,應先算括弧裡面的,再算括弧外面的;如果只含有同一級運算,應從左到右依次計算。
五、打電話
1、逐個法:所需時間最多;
2、分組法:相對節約時間;
3、同時進行法:最節約時間。
拓展閱讀:小學語文課文目錄
一年級上冊目錄
一年級下冊目錄
二年級上冊目錄
二年級下冊目錄
三年級上冊目錄
三年級下冊目錄
四年級上冊目錄
四年級下冊目錄
五年級上冊目錄
五年級下冊目錄
六年級上冊目錄
六年級下冊目錄
小學數學課文目錄
一年級上冊目錄
一年級下冊目錄
二年級上冊目錄
二年級下冊目錄
三年級上冊目錄
三年級下冊目錄
四年級上冊目錄
四年級下冊目錄
五年級上冊目錄
五年級下冊目錄
六年級上冊目錄
六年級下冊目錄
小學英語課文目錄
三年級上冊目錄
三年級下冊目錄
四年級上冊目錄
四年級下冊目錄
五年級上冊目錄
五年級下冊目錄
六年級上冊目錄
六年級下冊目錄
③ 五年級下冊數學必背知識點有哪些
五年級下冊數學必背知識點有如下:
一、長方形的周長=(長+寬)×2 ,C=(a+b)×2。
二、正方形的周長=邊長×4, C=4a。
三、長方形的面積=長×寬 ,S=ab。
四、正方形的面積=邊長×邊長 ,S=a.a=a^2。
五、三角形的面積=底×高÷2 ,S=ah÷2。
六、平行四邊形的面積=底×高, S=ah。
七、梯形的面積=(上底+下底)×高÷2, S=(a+b)h÷2。
八、圓的周長=圓周率×直徑=圓周率×半徑×2, c=πd=2πr。
九、圓的面積=圓周率×半徑×半徑πr ^2。
④ 五年級數學下學期期中考試內容有哪些
一、填空。(1-4題每空0.5分,其餘每空1分,共24分)
1、3.05m =( )cm 10.8m2 =( )dm2
6050cm3 =( )dm3 2800mL =( )L =( )dm3
2、在括弧里填上適當的體積單位或容積單位。
小礦泉水的容積約是1500( )
礦泉水的容積約是18( )
VCD機的體積約是4( )
車廂的體積約是15( )
3、長方體和正方體都有( )個面,( )條棱,( )個頂點。
4、36和9,( )是( )的倍數,( )是( )的因數。
5、寫出12的所有因數和50以內的所有倍數:
因數:( ) 倍數:( )
6、從0、5、6、7四個數中任意抽出3個,按要求組成4個不同的三位數:
奇數( );3的倍數( );偶數( );既是3的倍數又是5的倍數( )。
7、最小的自然數與最小的質數和最小的合數的和是( )。
8、兩個質數的和是10,積是21,它們分別是( )和( )。
9、同時是2、3、5的倍數的最小兩位數是( ),最大兩位數是( ),最小三位數是( )。
10、一個正方體的棱長擴大2倍,表面積就擴大( )倍。
11、一個長方體和一個正方體的棱長總和相等,已知長方體的長是6cm,寬是5cm,高是4cm,那麼正方體的棱長是( )cm,表面積是( )cm2,與長方體比較,( )的體積比較大。
二、判斷。(對的打「√」,錯的打「×」)(5分)
1、所有的奇數都是質數。 ( )
2、兩個質數的和是一定是偶數。 ( )
3、一個數的倍數一定比它的因數大。 ( )
4、任意一個奇數減去1,結果是偶數。 ( )
5、2個棱長1cm的正方體拼成一個長方體,長方體的表面積是12cm2。 ( )
三、選擇。(請選擇正確答案的序號填在括弧里)(12分)
1、相鄰的兩個體積單位之間的進率是( )。
① 10 ② 100 ③ 1000
2、一個正方體的棱長擴大3倍,它的體積擴大( )倍。
① 3 ② 9 ③ 27
3、一個合數至少有( )個因數