㈠ 高考數學必考知識點歸納總結
高考數學知識點總結:集合知識點匯總
一.知識歸納:
1.集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N.
2.子集、交集、並集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)並集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
②若, ,則 ;
③若且 ,則A=B(等集)
3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與、?的區別;(2) 與 的區別;(3) 與的區別。
4.有關子集的幾個等價關系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
高考數學必修三復習知識點
數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函數、對數函數和不等式的知識綜合起來,試題也常把等差數列等比數列,求極限和數學歸納法綜合在一起。
探索性問題是高考的熱點,常在數列解答題中出現。本章中還蘊含著豐富的數學思想,在主觀題中著重考查函數與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數法等基本數學方法。
近幾年來,高考關於數列方面的命題主要有以下三個方面;
(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。
(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。
(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最後一題難度較大。
1.在掌握等差數列等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題;
2.在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯系,形成更完整的知識網路,提高分析問題和解決問題的能力,
進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力。
高考高三數學必修三復習知識點
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質:
①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
(一)、高考數學知識點總結及公式大全 (二)、高考數學不好可以報數學師范嗎 (三)、高考數學好可以報什麼專業 (四)、高考數學造句,用高考數學造句 (五)、寧夏高考最高分是誰,2022年寧夏高考狀元名單分數學校 (六)、內蒙古高考最高分是誰,2022年內蒙古高考狀元名單分數學校 (七)、西藏高考最高分是誰,2022年西藏高考狀元名單分數學校 (八)、新疆高考最高分是誰,2022年新疆高考狀元名單分數學校 (九)、河南高考最高分是誰,2022年河南高考狀元名單分數學校 (十)、貴州高考最高分是誰,2022年貴州高考狀元名單分數學校
②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。 ;
㈡ 鏁板﹂珮鑰冭冨氬皯鐭ヨ瘑鐐
鏂伴珮鑰冩暟瀛﹀悇鐭ヨ瘑鐐規墍鍗犳瘮濡備笅錛
涓銆佸垎鏁板崰姣
1銆侀泦鍚5鍒
2銆佷笁澶у嚱鏁5鍒
3銆佺珛浣撳嚑浣曞垵姝12鍒+5鍒
4銆佸鉤闈㈠嚑浣曞垵姝5鍒+12鍒
10銆佽В涓夎掑艦5鍒+12鍒
11銆佹暟鍒5鍒+12鍒
12銆佷笉絳夊紡5鍒+12鍒
13銆佸父鐢ㄩ昏緫鐢ㄨ5鍒
14銆佸渾閿ユ洸綰誇笌鏂圭▼5鍒+12鍒
15銆佺┖闂村悜閲忎笌絝嬩綋鍑犱綍5鍒+12鍒
16銆佸兼暟鍙婂簲鐢5鍒+12鍒
17銆佹帹鐞嗕笌璇佹槑12鍒
18銆佹暟緋繪墿鍏呬笌澶嶆暟鐨勫紩鍏5鍒
19銆佽℃暟鍘熺悊5鍒
20銆佸潗鏍囩郴涓庡弬鏁版柟紼10鍒
浜屻侀樺瀷
1銆侀夋嫨+濉絀猴紙8棰樺崟閫+4棰樺氶+4棰樺~絀猴級16閬擄紝姣忛亾5鍒嗭紝鍏80鍒嗐傚崰鎬誨垎鐨勫ぇ鍗娿傞佸垎棰樸佸熀紜棰樿緝澶氾紝浠ヤ功涓婃ц川銆佸叕寮忕殑榪愮敤涓轟富銆
2銆侀泦鍚堛佸嶆暟錛氶粯璁ら佸垎棰樸傚鉤闈㈠悜閲忥細鑳藉緩緋誨敖閲忓緩緋誨仛銆傝℃暟鍘熺悊錛氫互浜屾¢」瀹氱悊涓庡垎閰嶉棶棰樺眳澶氥傜粺璁′笌姒傜巼錛氬彲鑳戒細鍦ㄨ婚樹笂鎸栧潙銆傚叾浠栵細鍛介樸佸悇絝犲熀鏈姒傚康銆佽$畻錛堜笉絳夊紡鎴栬呮瘮澶у皬錛
3銆佷腑楂樻。棰樹細浠ュ嚑浣曟垨鍑芥暟涓轟富錛屽彲鑳戒細鑰冩柊瀹氫箟棰樸傚嚑浣曪細瑙d笁瑙掑艦銆佺珛浣撳嚑浣曘佽В鏋愬嚑浣曘傚嚱鏁幫細鍑芥暟錛堟寚瀵瑰籙銆佹d綑鍒囷級鐨勬ц川錛堝崟璋冨囧伓瀵圭О鍛ㄦ湡錛変笌鍥懼儚錛堣瘑鍒鍜屽彉鎹錛夈佺畝鍗曟眰瀵箋佹瀯閫犲嚱鏁幫紙甯歌佷簬鎸囧規暟姣斿ぇ灝忥級銆
4銆佹柊瀹氫箟棰橈細榪戝勾鏉ラ珮鑰冪殑瓚嬪娍錛岄樺共緇欏嚭涓涓鏂扮殑瀹氫箟錛堥珮涓璇炬湰閲屾病瀛﹁繃鐨勶級錛岀劧鍚庤╀綘鍒╃敤鍏惰В棰樸傞毦搴︿竴鑸閮戒笉浼氬お澶э紝鍙瑕佷弗鏍兼寜鐓ч樺共鎻忚堪涓姝ヤ竴姝ュ仛灝辮屻
㈢ 初三數學知識點歸納 九年級數學重點知識總結
很多人想知道初三數學上有哪些重要知識點,初三必背重點知識有哪些呢?下面我為大家介紹一下!
初三數學重要知識點歸納大全
一、 圓的對稱性
1、圓的軸對稱性
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
二、 弧、弦、弦心距、圓心角之間的關系定理
1、圓心角
頂點在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦型顫心距中有一組量相等,拿租和那麼它們所對應的其餘各組量都分別相等。
三、圓周角定理及其推論
1、圓周角
頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等於它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
四、點和圓的位置關系
設⊙O的半徑是r,點P到圓心O的距離為d,則有:
d=r 點P在⊙O上;
d>r 點P在⊙O外。
過三點的圓
1、過三點的圓
不在同一直線上消盯的三個點確定一個圓。
2、三角形的外接圓
經過三角形的三個頂點的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4、圓內接四邊形性質(四點共圓的判定條件)
圓內接四邊形對角互補。
五、一些基本公式
三倍角公式
三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推導
附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
六、一些重點知識
巧記三角函數定義:初中所學的三角函數有正弦、餘弦、正切、餘切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:餘弦或餘弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數的增減性:正增余減特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣"123,321,三九二十七"既可。
平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分"跑不了",對角相等也有用,"兩組對角"才能成。
梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在"△"現;延長兩腰交一點,"△"中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎麼添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。
圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉比例,兩端各自找聯系。
正多邊形訣竅歌:份相等分割圓,n值必須大於三,依次連接各分點,內接正n邊形在眼前。
中考數學必考重要知識點大全
知識點1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數項是-2.
2.一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2.
3.一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識點2:直角坐標系與點的位置
1.直角坐標系中,點A(3,0)在y軸上。
2.直角坐標系中,x軸上的任意點的橫坐標為0.
3.直角坐標系中,點A(1,1)在第一象限。
4.直角坐標系中,點A(-2,3)在第四象限。
5.直角坐標系中,點A(-2,1)在第二象限。
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=的值為1.
2.當x=3時,函數y=的值為1.
3.當x=-1時,函數y=的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數。
2.函數y=4x+1是正比例函數。
3.函數是反比例函數。
4.拋物線y=-3(x-2)2-5的開口向下。
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2)。
7.反比例函數的圖象在第一、三象限。
知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3.
知識點6:特殊三角函數值
1.cos30°=根號3/2。
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
初三數學學習方法與技巧總結
1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.
2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.
3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.
4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.
㈣ 高考數學必考知識點歸納有哪些
高考數學必考知識點歸納:
第一,函數與導數
主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
第二,平面向量與三角函數、三角變換及其應用
這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
第三,數列及其應用
這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統計
這部分和我們的生活聯系比較大,屬應用題。
第六,空間位置關系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
第七,解析幾何
高考的難點,運算量大,一般含參數。高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。
㈤ 數學高考必考知識點有哪些
數學高考必考知識點有:
1、常用名稱和術語:坡角、仰角、俯角、方位角、方向角。
2、軌跡方程的相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然後代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。3、等比數列爆強公式:S(n+m)=S(m)+q2mS(n)。
4、三次函數曲線其實是中心對稱圖形。它有一個對稱中心,求法為二階導後導數為0,根x即為中心橫坐標,縱坐標可以用x帶入原函數界定。另外,必有唯一一條過該中心的直線與兩旁相切。
5、復合函數奇偶性:內偶則偶,內奇同外。
㈥ 中考數學必考知識點有哪些
中考數學必考知識點如下:
1、三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。
2、圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。
3、平行四邊形的定義和相關概念,平行四邊形的性質,平行四邊形的對角線的性質,兩條平行線距離。
4、平行四邊形的判定定理,平行四邊形的性質與判定的綜合運用,三角形的中位線定理。
5、矩形的性質和判定,直角三角形斜邊上中線,菱形的性質和判定定理,正方形的性質和判定。
㈦ 小升初數學必考知識點有哪些
小升初數學是非常容易拉分的科目,那麼小升初數學必考知識點有哪些呢。以下是由我為大家整理的「小升初數學必考知識點有哪些」,僅供參考,歡迎大家閱讀。
小升初數學必考知識點有哪些
一、整數和小數
1.最小的一位數是1,最小的自然數是0
2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.整數和小數都是按照十進制計數法寫出的數。
5.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
6.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
二、數的整除
1.因數和倍數:20÷4=5,20是4和5的倍數,4和5是20的因數。
2.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。
3.能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
4.質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。
合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。
最小的質數是2,最小的合數是4
1~20以內的質數有:2、3、5、7、11、13、17、19
1~20以內的合數有「4、6、8、9、10、12、14、15、16、18
5.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。
能被3整除的數的特徵:一個數的各位上數的和能被3整除,這個數就能被3整除。
6.公約因數、公倍數:幾個數公有的因數,叫做這幾個數的因數;其中最大的一個,叫做這幾個數的最大公因數。 幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
7.互質數:公因數只有1的兩個數叫做互質數。
三、四則運算
1.一個加數=和-另一個加數 被減數=差+減數 減數=被減數-差
一個因數=積÷另一個因數 被除數=商×除數 除數=被除數÷商
2.在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。
3.運算定律:
(1)加法交換律:a+b=b+a 兩個數相加,交換加數的位置,它們的和不變。
乘法交換律:a×b=b×a 兩個數相乘,交換因數的位置,它們的積不變。
(2)加法結合律:(a+b)+c=a+(b+c) 三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。
乘法結合律:(a×b)×c=a×(b×c) 三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。
(3)乘法分配律:(a+b)×c=a×c+b×c
兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(4)減法的性質:a-b-c=a-(b+c) 從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。
除法的性質:a÷b÷c=a÷(b×c) 一個數連續除以兩個數,等於這個數除以兩個除數的積。
拓展閱讀:小學提升數學成績的方法
一、培養認真審題的習慣
認真審題是正確解題、准確計算的前提。小學生因審題不嚴而導致錯誤的現象較重,原因是一方面學生識字量少,理解水平低;另一方面是做題急於求 成,不願審題。因此,教師在教學中,要引導學生認識審題的重要性,增強審題意識。同時,還要教給學生審題方法,建立解題的基本程序如審題—列式—計算—驗 算—作答等,把審題擺在解題過程的第一位。
二、培養認真驗算的習慣
在解題過程中,要培養認真驗算的習慣,這是保證解題正確性的關鍵。教師在教學中要把驗算作為解題過程的基本環節之一。加強訓練,嚴格要求和督促學生去做,要向學生講清什麼叫驗算以及驗算的方法、意義等。
三、培養認真估算的習慣
估算是保障計算準確的快捷手段,但現在不少教師認為估算很少作為考試內容而不予重視,這是十分錯誤的。教師要抓住各種時機,有意識的讓學生掌握 估算方法,引導學生發現一些和、差、積、商的規律。如2040÷40,估算時將2040看作2000,把2040÷40看作2000÷40來估算,可用來 檢驗計算的最高位是否正確,讓學生明白估算的重要性。
四、培養獨立完成作業的習慣
小學數學課堂作業較多,一些能力強的同學做的快、算的准,他們做完後便迫不及待的報出解題方法和結果。這使得一部分做題較慢的同學不假思索的照抄他們的結果,時間長了,這部分同學就養成了懶於思考的不良習慣。因此,培養學生獨立完成作業的習慣是學生學好數學的前提。
五、培養質疑問難的習慣
學生在學習中要多動腦筋,勤於思考。對概念、公式、定律等不要滿足於會背誦,更要力求理解。質疑問難是一種可貴的學習品質,能使學生在學習中刻 苦鑽研、勤於思考、主動進取。遇到不懂的問題主動請教,不恥下問,和同學展開討論,不弄清問題決不罷休,當問題得到解決時,學生就會享受到成功的喜悅,提 高學習數學的興趣。
六、培養自己發現錯誤的習慣
學生在學習中,必然會出現差錯,對此,老師不能等閑視之。因為學生出現差錯的地方,正是學生掌握知識的薄弱點,並且可能是典型的、普遍的。教師應有針對性地引導學生自己發現錯誤,用自己學到的檢驗方法去找出錯誤。在對比中把握問題的關鍵,力求自己發現並改正錯誤,提高解題技巧。