A. 小學數學三年級下冊知識點整理
三年級下冊
知識點歸納總結
1.位置:所在或所佔的地方。
2.方向:指東,西,南,北等方位。
3.除法:已知兩個因數的積與其中一個因數,求另一個因數的運算,叫做除法。
若ab=c(b≠0),用積數c和因數b來求另一個因數a的運算就是除法,寫作c/b,讀作c除以b(或b除c)。其中,c叫做被除數,b叫做除數,運算的結果a叫做商。
4.除法法則:除數是幾位,先看被除數的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫在哪位上面,不夠商一,0佔位。余數要比除數小,如果商是小數,商的小數點要和被除數的小數點對齊;如果除數是小數,要化成除數是整數的除法再計算。
5.商不變性質:被除數和除數同時乘或除以一個非零自然數,商不變。
6.除法的性質:一個數連續除以幾個數,等於這個數除以那幾個數的乘積,就是除法的性質。有時可以根據除法的性質來進行簡便運算。如:300÷25÷4=300÷(25×4)。
7.被除數、除數、商的關系:
被除數擴大(縮小)n倍,商也相應的擴大(縮小)n倍。
除數擴大(縮小)n倍,商相應的縮小(擴大)n倍)。
8.筆算除法:先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。
9.除數是小數的除法計演算法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。
10.沒有括弧的混合運算:
同級運算從左往右依次運算;兩級運算先算乘、除法,後算加減法。
11.第一級運算:加法和減法叫做第一級運算。
12.第二級運算:乘法和除法叫做第二級運算。
13.數據:數據也稱觀測值,是實驗、測量、觀察、調查等的結果,常以數量的形式給出。
14.數據分析:數據分析是組織有目的地收集數據、分析數據,使之成為信息的過程。
15.數據分析的步驟和應用:
數據分析有極廣泛的應用范圍。典型的數據分析可能包含以下三個步:
(1)探索性數據分析,當數據剛取得時,可能雜亂無章,看不出規律,通過作圖、造表、用各種形式的方程擬合,計算某些特徵量等手段探索規律性的可能形式,即往什麼方向和用何種方式去尋找和揭示隱含在數據中的規律性。
(2)模型選定分析,在探索性分析的基礎上提出一類或幾類可能的模型,然後通過進一步的分析從中挑選一定的模型。
(3)推斷分析,通常使用數理統計方法對所定模型或估計的可靠程度和精確程度作出推斷。
16.平均數
平均數是指在一組數據中所悄蔽有數據之和再除以數據的個數。平均數是表示一組數據集中趨勢的量數,它是反映數據集中趨勢的一項指標。
解答平均數應用題的關鍵在於確定「總數量」以及和總數量對應的總份數。
在統計工作中,平均數(均值)和標准差是描述數據資料集中趨勢和離散程度的閉納兩個最重要的測度值。
17.二十四時計時法
(1)分段計時法(十二時計時法):深夜12時是一日的開始,1天的24小時又分為兩段,每段12小時。從深夜12時起到中午12時叫做上午,再從中午12時起到深夜12時叫做下午。生活中通常採用這種計時法。
(2)二十四時計時法:這是是廣播電台、車站、郵電局等部門採用的0到24時計時法,按照這種計時法,下午1時就是13:00,下午2時就是14:00……夜裡12時就是24:00,又是第二天的0:00.
18.乘法算式中各數的名轎運沒稱
「×」是乘號,乘號前面和後面的數叫做因數,「=」是等於號,等於號後面的數叫做積。
10(因數)×(乘號)200(因數)=(等於號)2000(積)
19.乘法的運算定律
整數的乘法運算滿足:交換律,結合律,分配律,消去律。
隨著數學的發展,運算的對象從整數發展為更一般群。
群中的乘法運算不再要求滿足交換律。最有名的非交換例子,就是哈密爾頓發現的四元數群。但是結合律仍然滿足。
(1)乘法交換律:a×b=b×a
(2)乘法結合律:(a×b)×c=a×(b×c)
(3)乘法分配律:(a+b)×c=a×c+b×c
20.乘法表
21.面積:物體的表面—平面圖形的大小,叫做它們的面積
22.常用的面積單位有平方厘米、平方分米和平方米。
(1)邊長是1厘米的正方形,面積是1平方厘米。
(2)邊長是1分米的正方形,面積是1平方分米。
(3)邊長是1米的正方形,面積是1平方米。
23.一般測量較大的面積用到公頃和平方千米。
(1)邊長是100米的正方形,面積是1公頃。
(2)邊長是1千米的正方形,面積是1平方千米。
24.面積計算方法
長方形:S=ab{長方形面積=長×寬}
正方形:S=a2{正方形面積=邊長×邊長}
平行四邊形:S=ab{平行四邊形面積=底×高}
三角形:S=ab÷2{三角形面積=底×高÷2}
梯形:S=(a+b)×h÷2{梯形面積=(上底+下底)×高÷2}
圓形(正圓):S=πr2{圓形(正圓)面積=圓周率×半徑×半徑}
25.面積計量單位及進率:
1平方千米(k㎡)=100公頃(ha)1平方千米=1000000平方米(㎡)
1公頃=10000平方米1平方米=100平方分米(d㎡)
1平方分米=100平方厘米(c㎡)。
26.公頃:公頃的單位符號用「h㎡」表示,其中h表示百米,h㎡的含義就是百米的平方,也就是10000平方米,即1公頃。
27.小數:小數由整數部分、小數部分和小數點組成。當測量物體時往往會得到的不是整數的數,古人就發明了小數來補充整數小數是十進制分數的一種特殊表現形式。分母是10、100、1000……的分數可以用小數表示。所有分數都可以表示成小數,小數中除無限不循環小數外都可以表示成分數。
28.小數的基本性質:小數末尾添上0或去掉0,小數的大小不變,但計數單位變了。而且,小數點向左移動一位、兩位、三位,原來的數就縮小10倍、100倍、1000倍,小數點向右移動一位、兩位、三位,原來的數就擴大10倍、100倍、1000倍。
29.小數寫法:整數部分寫在小數點前,小數部分寫在小數點後,中間用小數點隔開。
30.小數的讀法:
(1)按照分數的讀法來讀.帶小數的整數部分按整數讀法讀;小數部分按分數讀法讀。
例如:0.38讀作百分之三十八,14.56讀作十四又百分之五十六。
(2)整數部分仍按整數的讀法來讀,小數點讀作「點」,小數部分順次讀出每個數位上的數字,若幾個零重復,不可只讀一個0.
例如:0.45讀作零點四五;56.032讀作五十六點零三二;1.0005讀作一點零零零五。
B. 瀵掑亣棰勪範鍀滀笁騫寸駭浜烘暀鐗堟暟瀛(涓嬪唽)鐭ヨ瘑鐐規眹鎬
瀵掑亣棰勪範鎸囧崡錛氫笁騫寸駭浜烘暀鐗堟暟瀛︿笅鍐岀煡璇嗙偣綺捐
浣嶇疆涓庢柟鍚
- 鎺屾彙鏂逛綅姒傚康錛氫笢瑗垮瑰硻錛屽崡鍖楀圭珛錛屼笢鍗楄タ鍖椼佽タ鍗椾笢鍖楀瑰簲銆
- 鍦板浘瀵艱埅瑙勫垯錛氶氬父渚濇嵁涓婂寳涓嬪崡宸﹁タ鍙充笢鐨勫師鍒欍
- 媧葷敤鏂逛綅鎻忚堪錛氭弿緇樿礬綰匡紝鐞嗚В浣嶇疆鐩稿規э紝瀛︿細鍒╃敤鎸囧崡閽堛佹槦杈般佸獎瀛愬拰澶闃充綅緗鍒ゆ柇鏂瑰悜銆
闄ゆ硶鍩虹
- 浜嗚В鍙g畻瑙勫垯錛氭棤浣欐暟鍜屾湁浣欐暟闄ゆ硶鐨勮繍鐢ㄣ
- 絎旂畻姝ラゆ竻鏅幫細鍟嗕綅紜瀹氥佽瘯鍟嗐佹鏌ャ侀獙綆楋紝閬靛驚楂樹綅寮濮嬬殑鍘熷垯銆
- 鎺屾彙闄ゆ硶瑙勫緥錛氬晢浣嶅垽鏂鍜屼綑鏁扮瑧娌″勭悊鏂規硶銆
鏁扮殑璁よ瘑
- 2銆3銆5鍊嶆暟鐗瑰緛鐨勭悊瑙d笌搴旂敤銆
- 鍊嶆暟鍏崇郴鐨勭悊瑙o細閫氳繃瀹炰緥鎺屾彙涓ゆ暟鍜屼笌鍊嶆暟鍜岀殑鍏崇郴銆
瀹炰緥瑙f瀽
- 渚嬮樿В鏋愶細鐞嗚В鍊嶆暟闂棰橈紝濡傜敳涔欎袱鏁幫紝鐢叉槸涔欑殑5鍊嶏紝24鐨勫嶆暟鎷嗚В銆
閿鏈ㄥご涓庤$畻
- 閿鏈ㄥご闂棰橈細璁$畻閿鎴5孌墊墍闇鐨勬℃暟錛屾帉鎻¢棶棰樿В鍐崇瓥鐣ャ
浣欐暟涓庡懆鏈
- 浣欐暟闂棰橈細鐞嗚В琚闄ゆ暟鑼冨洿鍙婄89涓褰╃伅棰滆壊瑙勫緥銆
鍔犲噺涔橀櫎鐨勭患鍚
- 鍔犲噺榪愮畻瀹炰緥錛氬傝╂縺鍒掕埞浜烘暟涓庡竷鏂欏簲鐢ㄣ
- 澶嶅紡緇熻¤〃錛氬悎騫朵笌鍒嗘瀽鏁版嵁錛屽煿鍏昏傚療鍔涖
涓や綅鏁頒箻娉
- 鍙g畻涓庣瑪綆楁妧宸э細鏁村嶮鏁頒笌涓浣嶆暟鐨勪箻娉曪紝鎺屾彙涔樻硶榪愮畻瑙勫垯銆
鍛ㄩ暱涓庨潰縐鍒濇ユ帴瑙
- 鐞嗚В鍛ㄩ暱鍜岄潰縐姒傚康錛岃繍鐢ㄥ叕寮忚В鍐抽棶棰樸
鏃墮棿涓庡ぉ鏁拌$畻
- 鏃剁版粦綰抽棿鍗曚綅鎹㈢畻鍜岃妭鏃ュぉ鏁拌勫垯錛屽傞棸騫村垽鏂涓庡e害璁$畻銆
灝忔暟鍏ラ棬
- 灝忔暟鐨勬剰涔変笌璇誨啓錛屽127.005鐨勮繪硶鍜屽皬鏁頒笌鍒嗘暟鐨勫叧緋匯
- 灝忔暟鍔犲噺榪愮畻錛岀洿瑙傛紨紺轟緥棰樸
鏁板﹀疄璺典笌鎷撳睍
- 鏁板﹀箍瑙掍腑鐨勬惌閰嶉棶棰橈紝閫氳繃榪炵嚎娉曠悊瑙f帓鍒椾笌緇勫悎鐨勫尯鍒銆
- 鑾峰彇瀛︿範璧勬簮錛氬叧娉ㄥ畼鏂瑰鉤鍙拌幏鍙栨洿澶氱煡璇嗙偣鍜岀粌涔犺祫鏂欍
璁╁╁瓙鍦ㄥ疄璺典腑瀛︿範錛屾瘡涓鐭ヨ瘑鐐歸兘鍏呮弧涔愯叮錛璁╁︿範鎴愪負涓縐嶆帰緔㈠拰鎴愰暱銆
C. 小學三年級數學知識點整理
【 #三年級# 導語】數學是人們認識自然、認識社會的重要工具。它是一門古老而嶄新的科學,是整個科學技術的基礎。以下是 整理的《小學三年級數學知識點整理》希望能夠幫助到大家。1.小學三年級數學知識點整理 篇一
【正方形】
概念:四條邊都相等、四個角都是直角的四邊形是正方形。
特點:有4個直角,4條邊相等。(正方形既是長方形,也是菱形)
周長:正方形吵喊的周長=邊長×4
【長方形】
概念:有一個角是直角的平行四邊形叫做長方形。
特點:長方形有兩條長,兩條寬,四個直角,對邊相等。
周長:長方形的周長=(長+寬)×2
【平行四邊形】
概念:兩組對邊互相平行的四邊形,它的對邊平行且相等,對角相等。(正方形、長方形數屬於特殊的平行四邊形)
特點:
①對邊相等、對角相等。
②平行四邊形容易變形。
周長:平行四邊形的周長=兩條邊的邊長相加×2
【梯形】
概念:有一組對邊平行,另一組對邊不平行的四邊形。
特點:只有一組對邊平行。
周長:上底+下底+兩腰長度
【等腰梯形】
概念:兩條腰相等的梯形,它的兩個底角相等,是軸對稱圖形,有一條對稱軸。
特點:有一組對邊平行且兩腰等長。
周長:上底+下底+兩腰長度
【菱形】
概念:一組鄰邊相等的平行四邊行是菱形。
特點:
①四條邊都相等
②對角線互相垂直平分
③一條對角線分別平分一組對角
周長:兩條不同的邊長相加×2
【每個四邊形都有哪些聯系】
1、正方形既是長方形,也是菱形。
2、正方形、長方形數屬於特殊的平行四邊形。
3、正方形還是特殊的長方形。
2.小學三年級數學知識點整理 篇二
分數的初步認識
1、分數的意義:把一個整體平均分成若干份,表示幾份就是這個整體的幾分之幾,所分的份數作分母,所取的份數作分子。
2、幾分之一:把一個物體或一個圖形平均分成幾份,每一份就是它的幾分之一。幾分之幾:把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。
3、把一個整體平均分得的份數越多,它的每一份所表示的數就越小。
4、分數比較大小的方法
①分子相同,分母小的分數反而大,分母大的分數反而小。
②分母相同,分子大的分數就大,分子小的分數就小。
5、分數加減法
①同分母的分數加、減法的計算方法:同分母分數相加減,分母不變,和分子相加、減。
②1減幾分之幾的計算方法:計算1減幾分之幾時,先把1寫成與減數分母相同的分數,再計算。
6、求一個數是另一個數的幾分之幾是多少的計算方法:先用這個數除以分母(求出1份的數量是多少),再用商乘分子(求出其中幾份是多少)。
3.小學三年級數學知識點整理 篇三
1、口算時要注意:
(1)0除以任何數(0除外)都等於0;
(2)0乘以任何數都得0;
(3)0加任何數都得任何數本身;
(4)任何數減0都得任何數本身。
升畢野2、沒有餘數的除法:
被除數÷除數=商
商×除數=被除數
被除數÷商=除數
數念有餘數的除法:
被除數÷除數=商……余數
商×除數+余數=被除數
(被除數—余數)÷商=除數
3、筆算除法順序:確定商的位數,試商,檢查,驗算。
(1)一位數除兩位數(商是兩位數)的筆算方法:先用一位數除十位上的數,如果有餘數,要把余數和個位上的數合起來,再用除數去除。除到被除數的哪一位,就把商寫在那一位上面。
(2)一位數除三位數的筆算方法:先從被除數的位除起,如果位不夠商1,就看前兩位,而除到被除數的哪一位,就要把商寫在那一位上,假如不夠商1,就在這一位商0;每次除得的余數都要比除數小,再把被除數上的數落下來和余數合起來,再繼續除。
(3)除法的驗算方法:
沒有餘數的除法的驗算方法:商×除數:被除數;
有餘數的除法的驗算方法:商×除數+余數=被除數。
4、基本規律:
(1)從高位除起,除到哪一位,就把商寫在那一位;
(2)三位數除以一位數時百位上夠除,商就是三位數;百位上不夠除,商就是兩位數;(位不夠除,就看兩位上商。)
(3)哪一位有餘數,就和後面一位上的數合起來再除;
(4)哪一位上不夠商1,就添0佔位;每一次除得的余數一定要比除數小。
4.小學三年級數學知識點整理 篇四
萬以內的加法和減法
1、讀數和寫數(讀數時寫漢字寫數時寫阿拉伯數字)
①一個數的末尾不管有一個0或幾個0,這個0都不讀。
②一個數的中間有一個0或連續的兩個0,都只讀一個0。
2、數的大小比較:
①位數不同的數比較大小,位數多的數大。
②位數相同的數比較大小,先比較這兩個數的位上的數,如果位上的數相同,就比較下一位,以此類推。
4、求一個數的近似數:看最位的後面一位,如果是0—4則用四舍法,如果是5—9就用五入法。
5、被減數是三位數的連續退位減法的運算步驟:
①列豎式時相同數位一定要對齊;
②減法時,哪一位上的數不夠減,從前一位退1,在本位上加上10再減;如果前一位是0,則再從前一位退1。
5.小學三年級數學知識點整理 篇五
測量
1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。
2、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。
3、在計算長度時,只有相同的長度單位才能相加減。
4、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10)
①進率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,
②進率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③進率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
5、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。
6、相鄰兩個質量單位進率是1000。
1噸=1000千克1千克=1000克1000千克=1噸1000克=1千克
D. 三年級下冊數學的知識點
三年級數學(下冊)知識要求歸納
第一單元 位置與方向
1、(東與西)相對,(南與北)相對,
(東南與西北)相對,(西南與東北)相對。
面南左為東,面北左為西,面東左為北,面西左為南。
2、地圖通常是按(上北、下南、左西、右東)來繪制的。
通常所說的八個方向:東、西、南、北、東南、西北、西南、東北。
3、會看簡單的路線圖,會描述行走路線。(做題時先標出東 南 西 北。)
一定寫清楚從哪兒向哪個方向走,走了多少米,到哪兒再向哪個方向走就到了哪裡。(在轉彎處要注意方向的變化)
判斷一個地方在什麼方向,先要找到一個為中心點(觀測點) 處畫「米」字元號,再進行判斷。
4、指南針是用來指示方向的,它的一個指針永遠指向(南方),另一端永遠指向(北方)。
5、生活中的方位知識:
①北斗星永遠在北方。 ②影子與太陽的方向相對。
③早上太陽在東方,中午在南方,傍晚在西方。
④風向與物體傾斜的方向相反。
(刮風時的樹朝風向相對的方向彎,煙朝風向相對的方向飄……)
我國地處北半球,樹葉茂盛的一面是南方,樹葉稀疏的一面是北方。
第二單元 除數是一位數的除法
1、只要是平均分就用(除 法)計算。
2、除數是一位數的豎式除法法則:
(1)從被除數的高位除起,每次用除數先試被除數的前一位數,如果它比除數小,再試除前兩位數。
(2)除到被除數的哪一位,就把商寫在那一位上。
(3)每求出一位商,餘下的數必須比除數小。
順口溜:除數是一位,先看前一位,一位不夠看兩位,除到哪位商那位,每次除後要比較,余數要比除數小。
3、被除數末尾有幾個0,商的末尾不一定就有幾個0。(如:30÷5 = 6)
4、筆算除法:
(1)余數一定要比除數小。在有餘數的除法中:最小的余數是1;最大的余數是除數減去1;最小的除數是余數加1;
最大的被除數=商×除數+最大的余數; 最小的被除數=商×除數+1;
(2)除法驗算:→ 用乘法
沒有餘數的除法 有餘數的除法
被除數÷除數=商 被除數÷除數=商……余數
商×除數=被除數 商×除數+余數=被除數
被除數÷商=除數 (被除數-余數)÷商=除數
0除以任何不是0的數(0不能為除數)都等於0;0乘以任何數都得0;
0加任何數都得任何數本身,任何數減0都得任何數本身。
5、筆算除法順序:確定商的位數,試商,檢查,驗算。
6、筆算除法時,哪一位上不夠商1,就添0佔位。(最高位不夠除,就向後退一位再商。)
7、多位數除以一位數(判斷商是幾位數):
用被除數最高位上的數跟除數進行比較,當被除數最高位上的數大於或等於除數時,被除數是幾位數商就是幾位數;當被除數最高位上的數小於除數時,商的位數就是被除數的位數減去1。
第三單元 復式統計表
復式統計圖的特點:有利於數據的比較,更容易分辨相同項目的區別。
第四單元 兩位數乘兩位數
1、兩位數乘兩位數,積可能是(三)位數,也可能是(四)位數。
2、口算乘法:整十、整百的數相乘,只需把前面數字相乘,再看兩個因數一共有幾個0,就在結果後面添上幾個0。
3、估算:18×22,可以先把因數看成整十、整百的數,再去計算。
→(可以把一個因數看成近似數,也可以把兩個因數都同時看成近似數。)
4、有大約字樣的一般要估算。
5、凡是問夠不夠,能不能等的題目,都要三大步:
①計算、②比較、③答題。→ 別忘了比較這一步。
6、筆算乘法:先把第一個因數同第二個因數個位上的數相乘,再與第二個因數十位上的數相乘。
7、相關公式: 因數×因數=積 積÷因數=另一個因數
運算順序:先乘除,再算加減;同級運算,應按從左到右的順序進行計算;如果有括弧,要先算括弧內的運算。
第五單元 面 積
1、物體的表面或封閉圖形的大小,就是它們的面積。
封閉圖形一周的長度叫周長。長度單位和面積單位的單位不同,無法比較。
2、比較兩個圖形面積的大小,要用統一的面積單位來測量。
3、①邊長1厘米的正方形,面積是1平方厘米;
②邊長1分米的正方形,面積是1平方分米;
③邊長1米的正方形,面積是1平方米;
4、長方形:
長方形的面積=長×寬 長方形的周長=(長+寬)×2
求長:長=長方形面積÷寬 已知周長求長:長=長方形周長÷2-寬
求寬:寬=長方形面積÷長 已知周長求寬:寬=長方形周長÷2-長
正方形:
正方形的面積=邊長×邊長 正方形的周長=邊長×4
邊長:邊長=正方形面積÷邊長 已知周長求邊長:邊長=正方形周長÷4
5、長度單位之間的進率:
1厘米=10毫米 1分米=10厘米 1米=10分米 1千米=1000米
6、周長相等的兩個長方形,面積不一定相等。面積相等的兩個長方形,周長也不一定相等。
7、在生活中找出接近於1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲蓋)、1平方分米(電腦A盤或電線插座)、1平方米(教室側面的小展板)。
8、區分長度單位和面積單位的不同:長度單位測量線段的長短,面積單位測量面的大小。
(二)長方形、正方形的面積計算
1、歸類:
什麼樣的問題是求周長?(縫花邊、圍柵欄、圍欄桿、池塘或花壇周圍小路長度、圍操場跑步的長度等等)
什麼樣的問題是求面積?或與面積有關?(課本等封面大小、刷牆、花壇周圍小路面積、給餐桌配玻璃、給課桌配桌布、灑水車灑到的地面、某物品佔地面積、買玻璃、買鏡子、買布、買地毯、鋪地磚、裁手帕等等)
2、長方形或正方形紙的剪或拼。
有兩個或兩個以上長方形或正方形拼成新的圖形後的面積與周長。從一個圖形中(通常是長方形)剪掉一個圖形(最大的正方形等)求剪掉部分的面積或周長、求剩下部分的面積或周長。要求先畫圖,再標上所用數據,最後列式計算。
3、刷牆的(有的中間有黑板、窗戶等):求要用到的面積等於大面積減去小面積。
4、常用的面積單位有:平方厘米、平方分米、平方米。
相鄰兩個常用的面積單位之間的進率是 100 。
測量房間、菜園、教室、操場的面積通常用平方米為單位 。
6、面積單位換算:1平方米 = 100平方分米
1平方分米 = 100平方厘米 1平方米 = 10000平方厘米
第六單元 年、月、日
1、重要的日子:1月1日元旦節,3月8日婦女節,3月12日植樹節,5月1日勞動節,5月4日青年節,6月1日兒童節,7月1日建黨節,8月1日建軍節,9月10日教師節,10月1日國慶節。
2、一、三、五、七、八、十、臘,三十一天永不差,四、六、九、冬三十整,平年二月二十八,閏年二月把一加。
3、季度: 一年分四季度,每3個月為一季度。
一、二、三月是 第一季度(平年有90天,閏年有91天)
四、五、六月是 第二季度(有91天)
七、八、九月是 第三季度(92天)
十、十一、十二月是 第四季度(有92天)。
平年上半年181天,閏年上半年182天,下半年都是184天。
4、求有多少個星期?用天數÷7。→ 如:31天 31÷7=4(個)……3(天)
平年一年有52個星期零1天,閏年一年有52個星期零2天。
5、判斷平年、閏年的方法:
① 一般用公歷年份÷4,正好余數是0,就是閏年;
② 公歷年份是整百的÷400,余數是0,就是閏年。
公歷年份是整百的閏年有:1200年,1600年,2000年,2400年;
6、經過的天數的計算:公式→結束時間—開始時間+1=經過的天數;
(二)24計時法
1、普通計時法轉化為24時計時法: ①從凌晨0時到中午12時,時刻相同,去掉時刻前的時間限制詞。 ②下午1時到晚上12時,時刻加上12,並去掉時刻前的時間限制詞。 2、24時計時法轉化為普通計時法: ①從凌晨0時到中午12時在時間前加上凌晨、早上或上午等時間限制詞。 ②13時到24時,用時刻減去12,再加下午、傍晚或晚上等時間限制詞。 3、計算經過時間:用結束時刻—開始時刻=經過時間。時刻—時刻=時間段
4、時間單位進率:1世紀=100年 1年=12個月 1天=24小時
1時=60分 1分=60秒
第七單元 小數的初步認識
1、比較兩個小數的大小,先比較小數的整數部分,整數部分大的數就大,如果整數部分相同就比較小數的小數部分,小數部分要從小數點後最高位比起,十分位上的數大的小數就大;十分位上的數相同的,再比較百分位上的數,以此類推。
2、計算小數加、減法時,一定要先對齊小數點再相加、減。
3、分母是10的分數寫成一位小數,分母是100的分數寫成兩位小數。
4、小數讀寫法:① 讀法→漢字形式;② 寫法→阿拉伯數字。
5、小數不一定比整數小。
第八單元 數學廣角----搭配
有順序地組數、搭配連線,才能保證不重復、不遺漏。