當前位置:首頁 » 基礎知識 » 初一數學知識點常考題講解
擴展閱讀
數學三年級整理知識點 2024-11-25 20:11:27

初一數學知識點常考題講解

發布時間: 2024-08-26 02:00:59

❶ 初一數學知識點總結歸納大全

很多同學蠢局在復習初一數學時找不到重點,因為沒有做過系統的總結,導致復習效率不高。下面是由我為大家整理的「初一數學知識點總結歸納大全」,僅供參考,歡迎大家閱讀本文。

七年級數學知識點總結

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個槐檔蘆特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反鉛帶數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

七年級數學知識點總結

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級數學知識點總結

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

拓展閱讀:初一數學考試答題技巧

選擇題的答題技巧

掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。

首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。

填空題答題技巧

要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。

對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。

解答題答題技巧

(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。

(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。

(3)給出結論。注意分類討論的問題,最後要歸納結論。

(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。

❷ 初一數學上冊知識點大全

初一數學上冊知識點大全有哪些你知道嗎?初一數學上冊的學習,需要大家對知識點進行 總結 ,這樣大家最大效率地提高自己的學習成績,下面是我整理的初一數學上冊知識點,歡迎大家查閱!

七年級數學 知識點

生活中的軸對稱

1、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠完全重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、軸對稱:對於兩個圖形,如果沿一條直線對折後,它們能互相重合,那麼稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關於某條直線對稱。

3、軸對稱圖形與軸對稱的區別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關系。

聯系:它們都是圖形沿某直線折疊可以相互重合。

2、成軸對稱的兩個圖形一定全等。

3、全等的兩個圖形不一定成軸對稱。

4、對稱軸是直線。

5、角平分線的性質

1、角平分線所在的直線是該角的對稱軸。

2、性質:角平分線上的點到這個角的兩邊的距離相等。

6、線段的垂直平分線

1、垂直於一條線段並且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。

2、性質:線段垂直平分線上的點到這條線段兩端點的距離相等。

7、軸對稱圖形有:

等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數條)、線段(1條)、角(1條)、正五角星。

8、等腰三角形性質:

①兩個底角相等。②兩個條邊相等。③「三線合一」。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。

9、①「等角對等邊」∵∠B=∠C∴AB=AC

②「等邊對等角」∵AB=AC∴∠B=∠C

10、角平分線性質:

角平分線上的點到角兩邊的距離相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分線性質:垂直平分線上的點到線段兩端點的距離相等。

∵OC垂直平分AB∴AC=BC

12、軸對稱的性質

1、兩個圖形沿一條直線對折後,能夠重合的點稱為對應點(對稱點),能夠重合的線段稱為對應線段,能夠重合的角稱為對應角。2、關於某條直線對稱的兩個圖形是全等圖形。

2、如果兩個圖形關於某條直線對稱,那麼對應點所連的線段被對稱軸垂直平分。

3、如果兩個圖形關於某條直線對稱,那麼對應線段、對應角都相等。

13、鏡面對稱

1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;

2.當垂直於鏡面擺放時,鏡面會改變它的上下方向;

3.如果是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;

學生通過討論,可能會找出以下解決物體與像之間相互轉化問題的辦法:

(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質;

(3)可以把數字左右顛倒,或做簡單的軸對稱圖形;

(4)可以看像的背面;(5)根據前面的結論在頭腦中想像。



初一數學解題技巧

一、答題原則

大家拿到考卷後,先看是不是本科考試的試卷,再清點試卷頁碼是否齊全,檢查試卷有無破損或漏印、重印、字跡模糊不清等情況。如果發現問題,要及時 報告 監考老師處理。

答題時,一般遵循如下原則:

1.從前向後,先易後難。通常試題的難易分布是按每一類題型從前向後,由易到難。因此,解題順序也宜按試卷題號從小到大,從前至後依次解答。當然,有時但也不能機械地按部就班。中間有難題出現時,可先跳過去,到最後攻它或放棄它。先把容易得到的分數拿到手,不要「一條胡同走到黑」,總的原則是先易後難,先選擇、填空題,後解答題。

2.規范答題,分分計較。數學分I、II卷,第I卷客觀性試題,用計算機閱讀,一要嚴格按規定塗卡,二要認真選擇答案。第II卷為主觀性試題,一般情況下,除填空題外,大多解答題一題設若干小題,通常獨立給分。解答時要分步驟(層次)解答,爭取步步得分。解題中遇到困難時,能做幾步做幾步,一分一分地爭取,也可以跳過某一小題直接做下一小題。

3.得分優先、隨機應變。在答題時掌握的基本原則是「熟題細做,生題慢做」,保證能得分的地方絕不丟分,不易得分的地方爭取得分,但是要防止被難題耗時過多而影響總分。

4.填充實地,不留空白。考試閱卷是連續性的流水作業,如果你在試卷上留下的空白太多,會給閱卷老師留下不好印象,會認為你確實不行。另外每道題都有若干采分點,觸到采分點便可給分,未能觸到采分點也沒有倒扣分的規定。因此只要時間允許,應盡量把試題提問下面的空白處寫上相應的公式或定理等有關結論。

5.觀點正確,理性答卷。不能因為答題過於求新,結果造成觀點錯誤,邏輯不嚴密;或在試卷上即興發揮,塗寫與試卷內容無關的字畫,可能會給自己帶來意想不到的損失。胡亂塗寫可以認為是在試卷上做記號,而判作弊。因此,要理性答卷。

6.字跡清晰,合理規劃。這對任何一科考試都很重要,尤其是對「精確度」較高的數理化,若字跡不清無法辨認極易造成閱卷老師的誤判,如填空題填寫帶圈的序號、數字等,如不清晰就可能使本來正確的失了分。 另外,卷面答題書寫的位置和大小要計劃好,盡量讓卷面安排做到 「前緊後松」而不是「前松後緊」。特別注意只能在規定位置答題,轉頁答題不予計分。

二、審題要點

審題包括瀏覽全卷和細讀試題兩個方面。

一是開考前瀏覽。開考前5分鍾開始發卷,大家利用發卷至開始答題這段有限的時間,通過答前瀏覽對全卷有大致的了解,初步估算試卷難度和時間分配,據此統籌安排答題順序,做到心中有數。此時考生要做到「寵辱不驚」,也就是說,看到一道似曾相識的題時,心中不要竊喜,而要提醒自己,「這道題做時不可輕敵,小心有什麼陷阱,或者做的題目只是相似,稍微的不易覺察的改動都會引起答案的不同」。碰到一道從未見過,猛然沒思路的題時,更不要受到干擾,相反,此時應開心,「我沒做過,別人也沒有。這是我的機會。」時刻提醒自己:我易人易,我不大意;我難人難,我不畏難。

二是答題過程中的仔細審題。這是關鍵步驟,要求不漏題,看準題,弄清題意,了解題目所給條件和要求回答的問題。不同的題型,考察不同的能力,具有不同的解題 方法 和策略,評分方式也不同,對不同的題型,審題時側重點有所不同。

1.選擇題是所佔比例較大(40%)的客觀性試題,考察的內容具體,知識點多,「雙基」與能力並重。對選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯誤陳述,採用特殊什麼方法求解等。

2.填空題屬於客觀性試題。一般是中檔題,但是由於沒有中間解題過程,也就沒有過程分,稍微出現點錯誤就和一點不會做結果相同,「後果嚴重」。審題時注意題目考查的知識點、方法和此類問題的易錯點等。

3.解答題在試卷中所佔分數較多(74分),不僅需要解出結果還要列出解題過程。解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯想相關題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。

三、時間分配

近幾年,隨著高考數學試題中的應用問題越來越多,閱讀量逐漸增加,科學地使用時間,是臨場發揮的一項重要內容。分配答題時間的基本原則就是保證在能得分的地方絕不丟分,不易得分的地方爭取得分。在心目

中應有「分數時間比」的概念,花10分鍾去做一道分值為12分的中檔大題無疑比用10分鍾去攻克1道分值為4分的中檔填空題更有價值。有效地利用最好的答題時間段,通常各時間段內的答題效率是不同的,一般情況下,最後10分鍾左右多數考生心理上會發生變化,影響正常答卷。特別是那些還沒有答完試卷的考生會分心、產生急躁心理,這個時間段效率要低於 其它 時間段。

在試卷發下來後,通過瀏覽全卷,大致了解試題的類型、數量、分值和難度,熟悉「題情」,進而初步確定各題目相應的作答時間。通常一般水平的考生,解答選擇題(12個)不能超過40分鍾,填空題(4個)不能超過15分鍾,留下的時間給解答題(6個)和驗算。當然這個時間安排還要因人而異。

在解答過程中,要注意原來的時間安排,譬如,1道題目計劃用3分鍾,但3分鍾過後一點眉目也沒有,則可以暫時跳過這道題;但若已接近成功,延長一點時間也是必要的。需要說明的是,分配時間應服從於考試成功的目的,靈活掌握時間而不墨守最初安排。時間安排只是大致的整體調度,沒有必要把時間精確到每1小題或是每1分鍾。更不要因為時間安排過緊,造成太大的心理壓力,而影響正常答卷。

一般地,在時間安排上有必要留出5—10分鍾的檢查時間,但若題量很大,對自己作答的准確性又較為放心的話,檢查的時間可以縮短或去除。但是需要注意的是,通常數學試卷的設計只有少數優秀考生才可能在規定時間內答完。

五、大題和難題

一張考卷必不可少地要有大題、難題以區分考生的知識和能力水平,以便拉開檔次。一般大題、難題分值都較高,遇到難題,要盡量放到最後去攻克;如果別的題目全部做完而且檢查無誤,而又有一定時間的話,就應想辦法攻克難題。不是每個人都能得150的,先把會的做完,也可以給自己奠定心裡優勢。

六、各種題型的解答技巧

1.選擇題的答題技巧

(1)掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。

(2)特值法。在選擇支中分別取特殊值進行驗證或排除,對於方程或不等式求解、確定參數的取值范圍等問題格外有效。

(3)反例法。把選擇題各選擇項中錯誤的答案排除,餘下的便是正確答案。

(4)猜測法。因為數學選擇題沒有選錯倒扣分的規定,實在解不出來,猜測可以為你創造更多的得分機會。除須計算的題目外,一般不猜A。

2.填空題答題技巧

(1)要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。

(2)一般第4個填空題可能題意或題型較新,因而難度較大,可以酌情往後放。

3.解答題答題技巧

(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。

(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。

(3)給出結論。注意分類討論的問題,最後要歸納結論。

(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。

七、如何檢查

在考試中,主動安排時間檢查答卷是保證考試成功的一個重要環節,它是防漏補遺、去偽存真的過程,尤其是考生如果採用靈活的答題順序,更應該與最後檢查結合起來。因為在你跳躍式往返答題過程中很可能遺漏題目,通過檢查可彌補這種答題策略的漏洞。

檢查過程的第一步是看有無遺漏或沒有做的題目,發現之後,應迅速完成或再次思考解法。對各類題型的做答過程和結果,如果有時間要結合草稿紙的解題過程全面復查一遍,時間不夠,則重點檢查。

選擇題的檢查主要是查看有無遺漏,並復查你心存疑慮的題目。但是若沒有充分的理由,一般不要改變你依據第一感覺作出的判斷。

對解答題的檢查,要注意結合審查草稿紙的演算過程,改正計算和推理中的錯誤。另外要補充遺漏的理由和步驟,刪去或修改錯誤或不準確的觀點。

計算題和證明題是檢查的重點,要仔細檢查是否完成了題目的全部要求;若時間倉促,來不及驗算的話,有一些簡單的驗證方法:一是查單位是否有誤;二是看計算公式引用有無錯誤;三是看結果是否比較「像」,這里所說的「像」是依靠 經驗 判斷,如應用題的答案是否符合實際意義;數字結論是否為整數、自然數或有規則的表達式,若結論為小數或無規則的數,則要重新演算,最好能用其他方法再試著去做

八、強調的一點是草稿紙,這是考試時和試卷同等重要的東西。

同學們拿到草稿紙後,請先將它三折。然後按順序使用。草稿紙上每道題之間留空,標清題號。字跡要做到能夠准確辨認,切不可胡寫亂畫。這樣做的好處是:

1. 草稿紙展現的是你的答題思路。草稿紙清晰,答題思路也會清晰,最起碼你清楚你已經做到了哪一步。如果草稿混亂的話,這一步推出來了,往往又忘了上一步是怎麼得到的。

2. 對於前面提到的暫時不會,回頭再做的題,由於你第一次做本題時已經進行了一定的思維過程。第二次做時如果重頭再思考非常浪費時間。利用草稿紙,可以迅速找到上次的思維斷點。從而繼續攻破。關鍵結論要特殊標記。

3. 檢查過程中,草稿紙更是最好的幫手。如果連演算過程都可從草稿紙上清晰找到的話,無疑會節省大量時間。

初一數學基本知識點歸納

第一章有理數

1、大於0的數是正數。

2、有理數分類:正有理數、0、負有理數。

3、有理數分類:整數(正整數、0、負整數)、分數(正分數、負分數)

4、規定了原點,單位長度,正方向的直線稱為數軸。

5、數的大小比較:

①正數大於0,0大於負數,正數大於負數。

②兩個負數比較,絕對值大的反而小。

6、只有符號不同的兩個數稱互為相反數。

7、若a+b=0,則a,b互為相反數

8、表示數a的點到原點的距離稱為數a的絕對值

9、絕對值的三句:正數的絕對值是它本身,

負數的絕對值是它的相反數,

0的絕對值是0。

10、有理數的計算:先算符號、再算數值。

11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

12、乘除:同號得正,異號的負

13、乘方:表示n個相同因數的乘積。

14、負數的奇次冪是負數,負數的偶次冪是正數。

15、混合運算:先乘方,再乘除,後加減,同級運算從左到右,有括弧的先算括弧。

16、科學計數法:用ax10n 表示一個數。(其中a是整數數位只有一位的數)

17、左邊第一個非零的數字起,所有的數字都是有效數字。

【知識梳理】

1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。

2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位於原點的兩側,並且到原點的距離相等。

3.倒數:若兩個數的積等於1,則這兩個數互為倒數。

4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;

幾何意義:一個數的`絕對值,就是在數軸上表示這個數的點到原點的距離.

5.科學記數法:,其中。

6.實數大小的比較:利用法則比較大小;利用數軸比較大小。

7.在實數范圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用於實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的關鍵。

初一數學基本知識點總結

一元一次方程知識點

知識點1:等式的概念:用等號表示相等關系的式子叫做等式.

知識點2:方程的概念:含有未知數的等式叫方程,方程中一定含有未知數,而且必須是等式,二者缺一不可.

說明:代數式不含等號,方程是用等號把代數式連接而成的式子,且其中一定要含有未知數.

知識點3:一元一次方程的概念:只含有一個未知數,並且未知數的次數是1的方程叫一元一次方程.任何形式的一元一次方程,經變形後,總能變成形為ax=b(a≠0,a、b為已知數)的形式,這種形式的方程叫一元一次方程的一般式.注意a≠0這個重要條件,它也是判斷方程是否是一元一次方程的重要依據.

例2:如果(a+1) +45=0是一元一次方程,則a________,b________.

分析:一元一次方程需要滿足的條件:未知數系數不等於0,次數為1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.

知識點4:等式的基本性質(1)等式兩邊加上(或減去)同一個數或同一個代數式,所得的結果仍是等式.即若a=b,則a±m=b±m.

(2) 等式兩邊乘以(或除以)同一個不為0的數或代數式, 所得的結果仍是等式.

即若a=b,則am=bm.或. 此外等式還有其它性質: 若a=b,則b=a.若a=b,b=c,則a=c.

說明:等式的性質是解方程的重要依據.

例3:下列變形正確的是( )

A.如果ax=bx,那麼a=b B.如果(a+1)x=a+1, 那麼x=1

C.如果x=y,則x-5=5-y D.如果則

分析:利用等式的性質解題.應選D.

說明:等式兩邊不可能同時除以為零的數或式,這一點務必要引起同學們的高度重視.

知識點5:方程的解與解方程:使方程兩邊相等的未知數的值叫做方程的解,求方程解的過程叫解方程.

知識點6:關於移項:⑴移項實質是等式的基本性質1的運用.

⑵移項時,一定記住要改變所移項的符號.

知識點7:解一元一次方程的一般步驟:去分母、去括弧、移項、合並同類項、將未知數的系數化為1.具體解題時,有些步驟可能用不上,有些步驟可以顛倒順序,有些步驟可以合寫,以簡化運算,要根據方程的特點靈活運用.

例4:解方程 .

分析:靈活運用一元一次方程的步驟解答本題.

解答:去分母,得9x-6=2x,移項,得9x-2x=6,合並同類項,得7x=6,系數化為1,得x=.

說明:去分母時,易漏乘方程左、右兩邊代數式中的某些項,如本題易錯解為:去分母得9x-1=2x,漏乘了常數項.

知識點8:方程的檢驗

檢驗某數是否為原方程的解,應將該數分別代入原方程左邊和右邊,看兩邊的值是否相等.

注意:應代入原方程的左、右兩邊分別計算,不能代入變形後的方程的左邊和右邊.

三、一元一次方程的應用

一元一次方程在實際生活中的應用,是很多同學在學習一元一次方程過程中遇到的一個棘手問題.下面是對一元一次方程在實際生活中的應用的一個專題介紹,希望能為同學們的學習提供幫助.

一、行程問題

行程問題的基本關系:路程=速度×時間,

速度=,時間=.

1.相遇問題:速度和×相遇時間=路程和

例1甲、乙二人分別從A、B兩地相向而行,甲的速度是200米/分鍾,乙的速度是300米/分鍾,已知A、B兩地相距1000米,問甲、乙二人經過多長時間能相遇?

解:設甲、乙二人t分鍾後能相遇,則

(200+300)× t =1000,

t=2.

答:甲、乙二人2鍾後能相遇.

2.追趕問題:速度差×追趕時間=追趕距離

例2甲、乙二人分別從A、B兩地同向而行,甲的速度是200米/分鍾,乙的速度是300米/分鍾,已知A、B兩地相距1000米,問幾分鍾後乙能追上甲? 解:設t分鍾後,乙能追上甲,則

(300-200)t=1000,

t=10.

答:10分鍾後乙能追上甲.

3. 航行問題:順水速度=靜水速度+水流速度,逆水速度=靜水速度-水流速度. 例3甲乘小船從A地順流到B地用了3小時,已知A、B兩地相距90千米.水流速度是20千米/小時,求小船在靜水中的速度.

解:設小船在靜水中的速度為v,則有

(v+20)×3=90,

v=10(千米/小時).

答:小船在靜水中的速度是10千米/小時.

二、工程問題

工程問題的基本關系:①工作量=工作效率×工作時間,工作效率=,工作時間=;②常把工作量看作單位1.

例4已知甲、乙二人合作一項工程,甲25天獨立完成,乙20天獨立完成,甲、乙二人合作5天後,甲另有事,乙再單獨做幾天才能完成?

解:設甲再單獨做x天才能完成,有

(+)×5+=1,

x=11.

答:乙再單獨做11天才能完成.

三、環行問題

環行問題的基本關系:同時同地同向而行,第一次相遇:快者路程-慢者路程=環行周長.同時同地背向而行,第一次相遇:甲路程+乙路程=環形周長.

例5王叢和張蘭繞環行跑道行走,跑道長400米,王叢的速度是200米/分鍾,張蘭的速度是300米/分鍾,二人如從同地同時同向而行,經過幾分鍾二人相遇?

解:設經過t分鍾二人相遇,則

(300-200)t=400,

t=4.

答:經過4分鍾二人相遇.

四、數字問題

數字問題的基本關系:數字和數是不同的,同一個數字在不同數位上,表示的數值不同.

例6一個兩位數,個位數字比十位數字小1,這個兩位數的個位十位互換後,它們的和是33,求這個兩位數.

解:設原兩位數的個位數字是x,則十位數字為x+1,根據題意,得

[10(x-1)+x]+[10x+(x+1)]=33,

x=1,則x+1=2.

∴這個數是21.

答:這個兩位數是21.

五、利潤問題

利潤問題的基本關系:①獲利=售價-進價②打幾折就是原價的十分之幾 例7某商場按定價銷售某種電器時,每台獲利48元,按定價的9折銷售該電器6台與將定價降低30元銷售該電器9台所獲得的利潤相等,該電器每台進價、定價各是多少元?

解:設該電器每台的進價為x元,則定價為(48+x)元,根據題意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] ,

x=162.

48+x=48+162=210.

答:該電器每台進價、定價各分別是162元、210元.

六、濃度問題

濃度問題的基本關系:溶液濃度=,溶液質量=溶質質量+溶劑質量,溶質質量=溶液質量×溶液濃度

例8用「84」消毒液配製葯液對白色衣物進行消毒,要求按1∶200的比例進行稀釋.現要配製此種葯液4020克,則需要「84」消毒液多少克?

解:設需要「84」消毒液x克,根據題意得

=,

x=20.

答:需要「84」消毒液20克.

七、等積變形問題

例1用直徑為90mm的圓柱形玻璃杯(已裝滿水,且水足夠多)向一個內底面積為131×131mm2,內高為81mm的長方體鐵盒倒水,當鐵盒裝滿水時,玻璃杯中水的高度下降了多少?(結果保留π)

第9 / 11頁

分析:玻璃杯里倒掉的水的體積和長方體鐵盒裡所裝的水的體積相等,所以等量關系為:

玻璃杯里倒掉的水的體積=長方體鐵盒的容積.

解:設玻璃杯中水的高度下降了xmm,根據題意,得

經檢驗,它符合題意.

八、利息問題

例2儲戶到銀行存款,一段時間後,銀行要向儲戶支付存款利息,同時銀行還將代扣由儲戶向國家繳納的利息稅,稅率為利息的20%.

(1)將8500元錢以一年期的定期儲蓄存入銀行,年利率為2.2%,到期支取時可得到利息________元.扣除利息稅後實得________元.

(2)小明的父親將一筆資金按一年期的定期儲蓄存入銀行,年利率為2.2%,到期支取時,扣除所得稅後得本金和利息共計71232元,問這筆資金是多少元?

(3)王紅的爸爸把一筆錢按三年期的定期儲蓄存入銀行,假設年利率為3%,到期支取時扣除所得稅後實得利息為432元,問王紅的爸爸存入銀行的本金是多少?

分析:利息=本金×利率×期數,存幾年,期數就是幾,另外,還要注意,實得利息=利息-利息稅.

解:(1)利息=本金×利率×期數=8500×2.2%×1=187元.

實得利息 =利息×(1-20%)=187×0.8=149.6元.

(2)設這筆資金為x元,依題意,有x(1+2.2%×0.8)=71232.

解方程,得x=70000.

經檢驗,符合題意.

答:這筆資金為70000元.

(3)設這筆資金為x元,依題意,得x×3×3%×(1-20%)=432.

解方程,得x=6000.

經檢驗,符合題意.

答:這筆資金為6000元.

初一數學上冊知識點大全相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊知識點總結

★ 初一上冊數學知識點歸納整理

★ 初一數學知識點小歸納

★ 初一數學上冊基本概念匯總與學習方法

★ 初一上冊數學知識點手抄報

★ 初一年級上冊數學的21個熱門知識點

★ 七年級數學知識點整理大全

★ 初一數學上冊重點知識整理

★ 七年級數學上冊知識歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❸ 初一數學重要知識點

初一數學重要知識點1

不等式:

①用符號>,=,號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

一元一次不等式組:

①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

初一數學重要知識點2

1、平方與平方根

2、面積與平方

(1)任意兩個正數的和的平方,等於這兩個數的平方和

(2)任意兩個正數的差的平方,等於這兩個數的平方和,再減去這兩個數乘積的2倍

任意兩個有理數的和(或差)的平方,等於這兩個數的平方和,再加上(或減去)這兩個數乘積的2倍

3、平方根

(1)正數有兩個平方根,這兩個平方根互為相反數;

(2)零隻有一個平方根,它就是零本身;

(3)負數沒有平方根

4、實數

無限不循環小數叫做無理數

有理數和無理數統稱為實數

5、平方根的運算

6、算術平方根的性質

性質1一個非負數的算術平方根的平方等於這個數本身

性質2一個數的平方的算術平方根等於這個數的絕對值

7、算術平方根的乘、除運算

1)算術平方根的乘法

sqrt(a)sqrt(b)=sqrt(ab)(a>=0,b>=0)

2算)術平方根的除法

sqrt(a)/sqrt(b)=sqrt(a/b)(a>=0,b>0)

通過分子、分母同乘以一個式子把分母中的根號化去火把根號中的分母化去,叫做分母有理化

3)被開方數的每個因數的指數都小於2;(2)被開方數不含有字母我們把符合這兩個條件的平方根叫做最簡平方根

8『算術平方根的加、減運算

如果幾個平方根化成最簡平方根以後,被開方數相同,那麼這幾個平方根就叫做同類平方根

9、一元二次方程及其解法

1)一元二次方程

只含有一個未知數,且未知數的最高次數是2的方程,叫做一元二次方程

2)特殊的一元二次方程的解法

3)一般的一元二次方程的解法——配方法

用配方法解一元二次方程的一般步驟是:

1、化二次項系數為1用二次項系數去除方程兩邊,將方程化為x^2+px+q=0的形式

2、移項把常數項移至方程右邊,將方程化為x^2+px=—q的形式

3、配方方程兩邊同時加上「一次項系數一半的平方」,是方程左邊成為含有未知數的完全平方形式,右邊是一個常數

4、有平方根的定義,可知

(1)當p^2/4—q>0時,原方程有兩個實數根;

(2)當p^2/4—q=0,原方程有兩個相等的實數根(二重根)

初一數學重要知識點3

1、單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式。

2、單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。

3、多項式:幾個單項式的和叫多項式。

4、多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

通過本章學習,應使學生達到以下學習目標:

1、理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。

2、理解同類項概念,掌握合並同類項的方法,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。

3、理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。

4、能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。

初一數學重要知識點4

初一數學重要知識點總結

1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變

初一數學重要知識點歸納

整式的加減

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的.和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.

5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.

6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.

7.合並同類項法則:系數相加,字母與字母的指數不變.

8.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.

9.整式的加減:整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並.

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.

初一數學重要知識點整理

⒈絕對值的幾何定義

一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。

2.絕對值的代數定義

⑴一個正數的絕對值是它本身;⑵一個負數的絕對值是它的相反數;⑶0的絕對值是0.

可用字母表示為:

①如果a>0,那麼|a|=a;②如果a<0,那麼|a|=-a;③如果a=0,那麼|a|=0。

可歸納為①:a≥0,|a|=a(非負數的絕對值等於本身;絕對值等於本身的數是非負數。)②a≤0,|a|=-a(非正數的絕對值等於其相反數;絕對值等於其相反數的數是非正數。)經典考題

如數軸所示,化簡下列各數

|a|,|b|,|c|,|a-b|,|a-c|,|b+c|

解:由題知道,因為a>0,b<0,c0,a-c>0,b+c<0,

所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

3.絕對值的性質

任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0|a|=0;

⑵一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;

⑶任何數的絕對值都不小於原數。即:|a|≥a;

⑷絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;

⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

⑹絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;

⑺若幾個數的絕對值的和等於0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。

(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)

經典考題

已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

解:因為|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

所以|a+3|=0,|2b-2|=0,|c-1|=0

即a=-3,b=1,c=1

所以a+b+c=-3+1+1=-1

4.有理數大小的比較

⑴利用數軸比較兩個數的大小:數軸上的兩個數相比較,左邊的總比右邊的小;

⑵利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;異號兩數比較大小,正數